<AhN
(@
»n
e
-

ALLD

Alloy Analyzer 4 Tutorial

Session 1: Intro and Logic

Greg Dennis and Rob Seater
Software Design Group, MIT

agenda

Session 1: Intro & Logic
— break
Session 2: Language & Analysis

Session 3: Static Modeling

— break

. _ | B M.. Escher
Session 4: Dynamic Modeling

trans-atlantic analysis

e Wl |wogman * NOtation inspired by Z

— sets and relations
— uniformity

N

— but not easily analyzed

e analysis inspired by SMV
— billions of cases in seconds
— counterexamples not proofs

Pittsburgh, home of SMV - butnot declarative

why declarative design?

| conclude there are two ways of constructing a software
design.

One way is to make it so simple there are obviously no
deficiencies, and the other way is to make it so
complicated that there are no obvious deficiencies.

— Tony Hoare [Turing Award Lecture, 1980]

why automated analysis?

The first principle is that you must not fool yourself, and you
are the easiest person to fool.

— Richard P. Feynman

alloy case studies

Multilevel security (Bolton)
Multicast key management (Taghdiri)
Rendezvous (Jazayeri)

Firewire (Jackson)

Intentional naming (Khurshid)
Java views (Waingold)

Access control (Zao)

Proton therapy (Seater, Dennis)
Chord peer-to-peer (Kaashoek)
Unison file sync (Pierce)
Telephone switching (Zave)

four key ideas . . .

1) everything is a relation
2) non-specialized logic
3) counterexamples & scope

4) analysis by SAT

¥§ Sy
b A0 %
e =

2 i 4
:#t ankki-)t

1) everything's a relation

o Alloy uses relations for
— all data types — even sets, scalars, tuples
— structures in space and time
 key operator is dot join
— relational join
— field navigation

— function application

S next s.next
sO

c c
: S.C I S.C

()

s.next.c s.next.c

why relations?

* easy to understand

— binary relation is a graph or mapping
* easy to analyze

— first order (tractable)

e uniform
set of addresses associated with name n in set of books B
Alloy: n.(B.addr)

Z: U { b: B ® b.addr (| {n} |)}
OCL: B.addr[n]->asSet()

There is no problem in computer science
that cannot be solved by an extra level
of indirection.

— David Wheeler

Wheeler

2) non-specialized logic

 No special constructs for state machines, traces, synchronization,
concurrency . . .

o Tien g ey

e MIRACLE s M5 vl
OLE RS E —.E"-

"I think you should be more
explicit here in step two"

3) counterexamples & scope

e Observations about design analysis:
— most assertions are wrong
— most flaws have small counterexamples

testing: scope-complete:
a few cases of arbitrary size all cases within a small bound

4) analysis by SAT

SAT, the quintessential hard problem (Cook 1971)
— SAT is hard, so reduce SAT to your problem
SAT, the universal constraint solver (Kautz, Selman, ... 1990's)

— SAT is easy, so reduce your problem to SAT
— solvers: Chaff (Malik), Berkmin (Goldberg & Novikov), ...

14
o

Eugene Henry -

Cook Goldberg Kautz Sharad Malik

Novikov

Moore's Law

19 1976 1982 1985 1989 1992 1994 1996 1998 2000 2001 2002 2003

SAT performance

1986 1992 1996

SAT trophies

SAT

(=]
fa

Industrial LN

u>
=
=
[}
=
s
)
=
1=
L=
w3
=
=T
&

>

>

install the Alloy Analyzer

Requires Java 5 runtime environment
- http://java.sun.com/

download the Alloy Analyzer 4
— http://alloy.mit.edu/alloy4/

ALLD

run the Analyzer
— double click alloy4.jar or
— execute java -jar alloy4.jar at the command line

this bullet indicates something you should do

-
Y

verify the installation

> Click the “file” menu, then click “open sample models” to open
examples/toys/ceilingsAndFloors.als

- click the “Execute” icon
— output shows graphic

* need troubleshooting?

— http://alloy.mit.edu/alloy4/

modeling “ceilings and floors”

sig Platform {}
there are “Platform” things

sig Man {ceiling, floor: Platform}

each Man has a ceiling and a floor Platform

pred Above [m, n: Man] {m.floor = n.ceiling}

Man m is “above” Man n if m's floor is n's ceiling

fact {all m: Man | some n: Man | Above[n,m] }

"One Man's Ceiling Is Another Man's Floor"

checking “ceilings and floors”

assert BelowToo {
all m: Man | some n: Man | Above [m,n]

}
"One Man's Floor Is Another Man's Ceiling"?

check BelowToo for 2
check "One Man's Floor Is Another Man's Ceiling"
counterexample with 2 or less platforms and men?

» clicking “Execute” ran this command
— counterexample found, shown in graphic

counterexample to “BelowToo”

Falow Too_im

PlatformO

Alloy = logic + language + analysis

* logic
— first order logic + relational calculus

* language
— syntax for structuring specifications in the logic

* analysis

— bounded exhaustive search for counterexample to a
claimed property using SAT

software abstractions

Daniel Jackson

logic: relations of atoms

 atoms are Alloy's primitive entities
— Indivisible, immutable, uninterpreted

* relations associate atoms with one another
— set of tuples, tuples are sequences of atoms

o every value in Alloy logic is a relation!

— relations, sets, scalars all the same thing

logic: everything's a relation

e sets are unary (1 column) relations

Name = { (NO), Addr = { (AO0), Rook =
<N1>, <A1>,
(N2) } (A2) }
* scalars are singleton sets
myName = {(N1) }
yourName = { (N2) }
myBook = {(RO) }
+ binary relation o ternary relation
names = { (B0, NO), addrs = { (BO,
(BO, N1), (BO,
(B1, N2)} EBl'

NO,
N1,
N1,
N2,

AQ
Al
A2
A2

S S’ S’ N

—— = ~ ~

logic: relations

addrs = {(BO, NO, AO0), (BO, N1, Al),
(Bl1, N1, A2), (B1l, N2, A2)}

BO NO A0

4

BO N1 a1 !

Bl N1 A2

size

Bl N2 A2

arity = 3

e rOWS are unordered
e columns are ordered but unnamed

 all relations are first-order
— relations cannot contain relations, no sets of sets

logic: address book example

Name = {(NO), (N1), (N2)}
Addr = {(AO0), (Al), (A2)}
Target = {(NO), (N1), (N2), (AO0), (Al), (A2)}
address = {(NO, Al), (N1, N2), (N2, Al), (N2, AQ)}
Target \
Name @ address
address
address N2 address
\ J

logic: constants

none empty set
univ universal set
iden identity relation

Name = {(NO), (N1), (N2)}

Addr = {(A0), (Al)}

none = {}

univ = { (NO) ’ (Nl) ’ (NZ) ’ (AO) ’

iden = {(NO, NO), (N1, N1), (N2,
(AO, AOQ), (Al, Al)}

logic: set operators

- Union Name = {(NO), (N1), (N2)}
& intersection Alias = {(N1), (N2)}
. Group = {(NO)}
- difference RecentlyUsed = {(NO), (N2)}
in subset .) ,
-) Alias + Group = {(NO), (N1), (N2)}
= equality Alias & RecentlyUsed {(N2)}
Name - RecentlyUsed = {(N1)}
RecentlyUsed in Alias = false
greg = {(NO)} RecentlyUsed in Name = true
rob = {(N1)} Name = Group + Alias = true
greg + rob = {(NO), (N1)}
greg = rob = false
rob in none = false
cacheAddr = {(NO, AO0), (N1, Al)}
diskAddr = {(NO, AQ0), (N1, A2)}
cacheAddr + diskAddr =
cacheAddr & diskAddr =
cacheAddr = diskAddr =

logic: product operator

b—>b' =

b—>address + b'—>address' =

Name = { (NO), (N1)}
Addr = {(AO0), (Al)}
-> cross product Book = {(BO)}
Name—->Addr = { (NO, AO0), (NO, Al),
(N1, AO), (N1, Al)}
Book—>Name—->Addr =
{(BO, NO, AO), (BO, NO, Al),
(BO, N1, AO), (BO, N1, Al)}
b = {(BO)}
b' = {(Bl)}
address = {(NO, AO0), (N1, Al)}
address' = { (N2, A2)}

logic:

relational join

N —
m,d>:§\<:

oQo0w

~

/1

~

~

~

ONNORNONNG®!

A\

Il
2

/ /
5058

~

~

~

~

© O 0 O

\
\
2

logic: join operators

host = { (AO,

Rook .address.

host [myAddr]
address.host

address = { (BO,

dot join el[e2] = e2.el
Book = {(BO)}
Name = {(NO), (N1), (N2)}
Addr = {(AO0), (Al), (A2)}
Host = {(HO), (H1)}
myName = { (N1) }
myAddr = { (AO)}

No, ao0), (BO, N1, AO0), (BO, N2, A2)}

HO), (aAl, H1), (AZ, HI1)}

Book.address = { (NO, AO0) (
Book.address [myName] = { (AO
}

logic: unary operators

~ transpose
. . N —

~ transitive closure r=r+r.rtr.r.v+ .
: . *r = iden + “r

* reflexive transitive closure

apply only to binary relations

Node = {(NO), (N1), (N2), (N3)}

next = {(NO, N1), (N1, N2), (N2, N3)}

~next = { (N1, NO), (N2, N1), (N3, N2)}

"next = {(NO, N1), (NO, N2), (NO, N3),
(N1, N2), (N1, N3),
(N2, N3)}

*next = {(NO, NO), (NO, N1), (NO, N2), (NO, N3),
(N1, N1), (N1, N2), (N1, N3),
(N2, N2), (N2, N3), (N3, N3)}

first = {(NO)}

rest = {(Nl)r (NZ)I (NB)}

first. next = rest

first.*next = Node

logic: restriction and override

<: domain restriction
.. p ++ g =
P> I"Clnge restriction p - (domaln[q] < p) + g
++ override
Name = {(NO), (NI1), (N2)}
Alias = {(NO), (N1)}
Addr = { (AO0) }
address = {(NO, N1), (N1, N2), (N2, AO0)}
address :> Addr = { (N2, AO0)}
Alias <: address = address :> Name = {(NO, N1), (N1, N2)}
address :> Alias = {(NO, N1)}

workAddress = {(NO, N1), (N1, AO0)}

address ++ workAddress = S

m' = m ++ (k —> v)
update map m with key-value pair (k, v)

logic: boolean operators

! not negation
&& and conjunction
| | or disjunction
=> implies implication
else alternative
<=> iff bi-implication

four equivalent constraints:
F'=> G else H

FF implies G else H

(F && G) || ((!'F) && H)

(F and G) or ((not F) and H)

logic: quantifiers

all F holds for every x in e
some F holds for at least one x in e
no F holds for no x in e

o lone F holds for at most one x in e
one F holds for exactly one x in e

all x: e | F
all x: el, y: e2 | F
all x, y: e | F

all disj x, y: e |

some n: Name, a: Address | a in n.address
some name maps to some address — address book not empty

no n: Name | n in n.” "address

all n: Name | lone a: Address | a in n.address

all n: Name | no disj a, a': Address | (a + a') in n.address

logic: set declarations

set any number
one exactly one
lone zero or one
some one or more

RecentlyUsed: set Name
RecentlyUsed is a subset of the set Name

senderAddress: Addr
senderAddress is a singleton subset of Addr

senderName: lone Name
senderName is either empty or a singleton subset of Name

receliverAddresses: some Addr
receiverAddresses is a nonempty subset of Addr

logic: relation declarations

A m —> n B r: A —> B <=>

r: A m —-—> n B r: A set —> set B

(r:

A m —-> n B) <=>

((all a: A | n a.r) and (all b: B | m r.b))

workAddress: Name —-> lone Addr
each alias refers to at most one work address

homeAddress: Name —-> one Addr
each alias refers to exactly one home address

mempbers: Name lone -> some Addr
address belongs to at most one group name

and group contains at least one address

r: A —>
all a:

(B m-> n C) <=> r: (A m —> n B)
A | a.r: Bm —-—> n C all c: C | r.c:

-> C <=>
A m —> n B

logic: quantified expressions

some e
no e

lone e
one e

e has at least one tuple
e has no tuples

e has at most one tuple
e has exactly one tuple

some Name
set of names is not empty

some address
address book is not empty — it has a tuple

no (address.Addr - Name)
nothing is mapped to addresses except names

all n: Name | lone n.address
every name maps to at most one address

logic: comprehensions

{x1: el, x2: e2, ..., Xn: en | F}

{n: Name | no n.”"address & Addr}
set of names that don't resolve to any actual addresses

{n: Name, a: Address | n —> a in "“address}
binary relation mapping names to reachable addresses

logic: if and let

f implies el else e2
let x = e | formula
let x = e | expression

four equivalent constraints:

all n: Name |
(some n.workAddress
implies n.address = n.workAddress
else n.address = n.homeAddress)

all n: Name |
let w = n.workAddress, a = n.address |
(some w implies a = w else a = n.homeAddress)

all n: Name |
let w = n.workAddress |

all n: Name |
n.address = (let w = n.workAddress |
(some w implies w else n.homeAddress))

n.address = (some w implies w else n.homeAddress)

logic: cardinalities

fr number of tuples in r N leq ”al}f
0,1, integer literal < ess than
+ plus > greater than
- Minus =< less than or equal to
>= greater than or equal to
sum x: e | ie

sum of integer expression ie for all singletons x drawn from e

all b: Bag | #b.marbles =< 3
all bags have 3 or less marbles

#Marble = sum b: Bag | #b.marbles
the sum of the marbles across all bags
equals the total number of marbles

2 logics in one
“everybody loves a winner”

predicate logic

- [| Wwinner(w) U@ | Loves (p,

relational calculus

- Person X Winner [lloves

Alloy logic — any way you want
- all p: Person, w: Winner | p
— Person —-> Winner 1in loves

— all p: Person | Winner in p.l1l

W)

—> w in loves

oves

>

>

logic exercises: binary relations & join

Download properties.als from the tutorial website
— explores properties of binary relations

Download distribution.als from the tutorial website
— explores the distributivity of the join operator

Follow the instructions in the models

Don't hesitate to ask questions

logic exercise: modeling the tube
> Download tube.als from the tutorial website

» a simplified portion of the London Underground:

Jubilee Line ® Stanmore
== Central Line o Baker Street
Circle Line

B g S U v

> follow the instructions in the model

