Métodos Formais
2025.2

Alloy modeling: Academia model

Area de Teoria DCC/UFMG



“Academia” modeling example

@ We will model an academic enterprise expressing relationships between

@ People

o Faculty
o Students

o Graduate
o Undergraduate

o Instructors

o Courses

How should we model these basic domains in Alloy?

Alloy modeling: Academia model 1/11



Strategy

@ Build and validate your model incrementally

e Start with basic signatures and fields
o Add basic constraints
o Instantiate the model and study the results

o Probe the model with assertions

@ Add groups of features at a time
New signatures and fields

New constraints

Confirm previous assertions

Probe new features with assertions

Alloy modeling: Academia model 2/11



Basic Components

@ People

e Students: Undergrads and Grads
e Instructors: Faculty and Grads

@ Courses

@ Relationships

e One instructor teaches a course
o One or more students are taking a course
e Students can be waiting for a course

Alloy modeling: Academia model 3/11



Auxiliary relations

@ We may choose to define auxiliary relations:

e teaches (transpose of taughtby)
e taking (transpose of enrolled)
e waitingfor (transpose of waitlist)

fun teaches: Instructor — Course { “taughtby }
fun taking: Student — Course { “enrolled }
fun waitingfor: Student — Course { “"waitlist }

@ Or not:

e if i is an instructor, then

i.teaches <=> taughtby.i

Alloy modeling: Academia model 4 /11



Academia constraints

@ All instructors are either faculty or graduate students
e Was not expressed in set definition—although it could have, with

sig Instructor in Graduate + Faculty

@ No one is waiting for a course unless someone is enrolled

@ No graduate students teach a course that they are enrolled in or waiting for

Alloy modeling: Academia model 5/11



Academia constraints

@ All instructors are either faculty or graduate students
e Was not expressed in set definition—although it could have, with

sig Instructor in Graduate + Faculty

As a fact:

all i: Instructor | i in Faculty + Graduate

@ No one is waiting for a course unless someone is enrolled

@ No graduate students teach a course that they are enrolled in or waiting for

Alloy modeling: Academia model

5/ 11



Academia constraints

@ All instructors are either faculty or graduate students
e Was not expressed in set definition—although it could have, with

sig Instructor in Graduate + Faculty
As a fact:

all i: Instructor | i in Faculty + Graduate

@ No one is waiting for a course unless someone is enrolled

all ¢: Course |
some c.waitlist = some c.enrolled

Actually superfluous. Why?

@ No graduate students teach a course that they are enrolled in or waiting for

Alloy modeling: Academia model

5/ 11



Academia constraints

@ All instructors are either faculty or graduate students
e Was not expressed in set definition—although it could have, with

sig Instructor in Graduate + Faculty
As a fact:

all i: Instructor | i in Faculty + Graduate

@ No one is waiting for a course unless someone is enrolled

all ¢: Course |
some c.waitlist = some c.enrolled

Actually superfluous. Why?

@ No graduate students teach a course that they are enrolled in or waiting for

all c: Course |

c.taughtby !in c.enrolled + c.waitlist

Alloy modeling: Academia model

5/ 11



Academia realism constraints

To make instances more interesting to analyze, we can add “realism” facts or
constraints in the run command:

@ There is a graduate student who is an instructor

@ There are at least:

e Two courses and
e Three undergraduates

Alloy modeling: Academia model 6 /11



Academia realism constraints

To make instances more interesting to analyze, we can add “realism” facts or
constraints in the run command:

@ There is a graduate student who is an instructor

@ There are at least:

e Two courses and
e Three undergraduates

@ We can also define a predicate:

pred RealismConstraints [] {
some Graduate & Instructor
#Course > 1
#Undergrad > 2

}

Alloy modeling: Academia model 6 /11



Academia realism constraints

@ No instances exist in the default scope is an instructor

o Why?
o default scope is up to 3 elements in top-level sigs
e So we cannot have more than 3 students

@ The constraints

some Graduate & Instructor
#Undergrad > 2

entail at least 4 students

Alloy modeling: Academia model 7/11



Academia assertions

@ No student is enrolled and on the waitlist for the same course

@ No instructor is on the waitlist for a course that they teach

Alloy modeling: Academia model 8 /11



Academia assertions

@ No student is enrolled and on the waitlist for the same course

assert NoEnrolledAndWaiting {
all c: Course |
no (c.enrolled & c.waitlist)

@ No instructor is on the waitlist for a course that they teach

Alloy modeling: Academia model 8 /11



Academia assertions

@ No student is enrolled and on the waitlist for the same course

assert NoEnrolledAndWaiting {
all c: Course |
no (c.enrolled & c.waitlist)

@ No instructor is on the waitlist for a course that they teach

assert NoWaitingTeacher {
all c: Course |
no (c.taughtby & c.waitlist)

Alloy modeling: Academia model 8 /11



Academia assertions

@ No student is enrolled and on the waitlist for the same course

o A counterexample has been found, hence we transform this assertion into a
fact.

@ No instructor is on the waitlist for a course that they teach

e No counterexamples. So is it valid?

Alloy modeling: Academia model 9/11



Academia assertions

@ No student is enrolled and on the waitlist for the same course

o A counterexample has been found, hence we transform this assertion into a
fact.

@ No instructor is on the waitlist for a course that they teach

e No counterexamples. So is it valid?
e Not necessarily! But we can generally rely on the small scope hypothesis:
o if an assertion is not valid, it probably has a small counter-example

o But why is this assertion valid?

Alloy modeling: Academia model 9/11



Academia assertions

@ No student is enrolled and on the waitlist for the same course

o A counterexample has been found, hence we transform this assertion into a
fact.

@ No instructor is on the waitlist for a course that they teach

e No counterexamples. So is it valid?

e Not necessarily! But we can generally rely on the small scope hypothesis:
o if an assertion is not valid, it probably has a small counter-example

o But why is this assertion valid?

@ Since faculty are not students, they cannot be on a waitlist

Alloy modeling: Academia model 9/11



Academia assertions

@ No student is enrolled and on the waitlist for the same course

o A counterexample has been found, hence we transform this assertion into a
fact.

@ No instructor is on the waitlist for a course that they teach
e No counterexamples. So is it valid?
e Not necessarily! But we can generally rely on the small scope hypothesis:
o if an assertion is not valid, it probably has a small counter-example
o But why is this assertion valid?

@ Since faculty are not students, they cannot be on a waitlist

@ Grad students do not teach courses they are enrolled in or waiting to enroll in

Alloy modeling: Academia model 9/11



Extensions

@ Add an attribute for students

o Unique IDs

o Note you'll need a new signature

@ Add student transcripts (only taken courses, no grades)
e A student’s transcript contains a course only if it contains the course’s
prerequisites
@ Add prerequisite structure for courses

e A courses does not have itself as a prerequisite

e Students can only wait to be in a course for which they already have the
prerequisites

@ Do a realism predicate where there exists a course with prerequisites and with
students enrolled.

Alloy modeling: Academia model 10 / 11



Acknowledgments

These notes are heavily based on notes from Matt Dwyer, John Hatcliff, Rod
Howell, Laurence Pilard and Cesare Tinelli.

Alloy modeling: Academia model 11 /11



