
Métodos Formais
2025.2

Introduction to Alloy: Constraints

Área de Teoria DCC/UFMG

Model weaknesses

The model is underconstrained

It doesn’t match our domain knowledge

Asymmetric marriage, self child/sibling, asymmetric siblings, multiple fathers...

We can add constraints to enrich the model

Under-constrained models are common early on in the development process

AA gives us quick feedback on weaknesses in our model

We can incrementally add constraints until we are satisfied with it

Introduction to Alloy: Constraints 1 / 34

Adding constraints

We’d like to enforce the following constraints (concerning biology)

No person can be their own parent (or more generally, their own ancestor)

No person can have more than one father or mother

A person’s siblings are those with the same parents

We could also enforce the following social constraints

The spouse relation is symmetric

A man’s wife cannot be one of his siblings

Introduction to Alloy: Constraints 2 / 34

Alloy Constraints

Signatures and fields define classes (of atoms) and relations between them

Alloy models can be refined further by adding formulas expressing additional
constraints over those classes and relations

Several operators are available to express both logical and relational
constraints

Introduction to Alloy: Constraints 3 / 34

Logical operators

The usual logical operators are available, often in two forms

− not ! (Boolean) nega t i on

− and && con j u n c t i o n

− or | | d i s j u n c t i o n

− i m p l i e s => i m p l i c a t i o n

− e l s e a l t e r n a t i v e

− <=> e q u i v a l e n c e

Introduction to Alloy: Constraints 4 / 34

Quantifiers

Alloy includes a rich collection of quantifiers

a l l x : S | F F ho l d s f o r e v e r y x i n S
some x : S | F F ho l d s f o r some x i n S
no x : S | F F ho l d s f o r no x i n S
lone x : S | F F ho l d s f o r at most one x i n S
one x : S | F F ho l d s f o r e x a c t l y one x i n S

Introduction to Alloy: Constraints 5 / 34

Predefined sets in Alloy

There are three predefined set constants:

none : empty set
univ : universal set
ident : identity relation

Example. For a model instance with just:

Man = {(M0) , (M1) , (M2)}
Woman = {(W0) , (W1)}

the constants have the values

none = {}
univ = {(M0) , (M1) , (M2) , (W0) , (W1)}
ident ={(M0,M0) , (M1,M1) , (M2,M2) , (W0,W0) , (W1,W1)}

Introduction to Alloy: Constraints 6 / 34

Everything is a Set in Alloy

There are no scalars

We never speak directly about elements (or tuples) of relations

Instead, we can use singleton relations:

one s i g Matt extends Person

Quantified variables always denote singleton relations:

a l l x : S | . . . x . . .

x = {t} for some element t of S

Introduction to Alloy: Constraints 7 / 34

Set operators

+ union
& i n t e r s e c t i o n
− d i f f e r e n c e
i n s ub s e t
= e q u a l i t y
!= d i s e q u a l i t y

Example. Married men:

Mar r i ed & Man

Introduction to Alloy: Constraints 8 / 34

Relational operators

−> arrow (c r o s s p roduc t)
˜ t r a n s p o s e
. dot j o i n
[] box j o i n
ˆ t r a n s i t i v e c l o s u r e
∗ r e f l e x i v e − t r a n s i t i v e c l o s u r e
<: domain r e s t r i c t i o n
:> image r e s t r i c t i o n
++ o v e r r i d e

Introduction to Alloy: Constraints 9 / 34

Relational composition (Join)

p . q

p and q are two relations that are not both unary

p.q is the relation you get by taking every combination of a tuple from p and
a tuple from q and adding their join, if it exists

Introduction to Alloy: Constraints 10 / 34

How to join tuples?

What is the join of theses two tuples ?

(a1 , . . . , am)
(b1 , . . . , bn)

If am ̸= b1, then join is undefined

If am = b1, then it is

(a1 , . . . , am−1,b2 , . . . , bn)

Examples.

(a , b) . (a , c , d) unde f i n ed
(a , b) . (b , c , d) = (a , c , d)

What about (a).(a)?

Not defined!

t1.t2 is not defined if t1 and t2 are both unary tuples

Introduction to Alloy: Constraints 11 / 34

How to join tuples?

What is the join of theses two tuples ?

(a1 , . . . , am)
(b1 , . . . , bn)

If am ̸= b1, then join is undefined

If am = b1, then it is

(a1 , . . . , am−1,b2 , . . . , bn)

Examples.

(a , b) . (a , c , d) unde f i n ed
(a , b) . (b , c , d) = (a , c , d)

What about (a).(a)? Not defined!

t1.t2 is not defined if t1 and t2 are both unary tuples

Introduction to Alloy: Constraints 11 / 34

Example: family structure

abstract s i g Person {
c h i l d r e n : set Person ,
s i b l i n g s : set Person

}
s i g Man , Woman, Other extends Person {}
one s i g Matt i n Man {}
s i g Marr i ed i n Person {

spouse : one Marr i ed
}

How would you use join to find Matt’s children or grandchildren ?

Matt . c h i l d r e n −− Matt ’ s c h i l d r e n
Matt . c h i l d r e n . c h i l d r e n −− Matt ’ s g r a n d c h i l d r e n

What if we want to find Matt’s descendants?

Introduction to Alloy: Constraints 12 / 34

Example: family structure

abstract s i g Person {
c h i l d r e n : set Person ,
s i b l i n g s : set Person

}
s i g Man , Woman, Other extends Person {}
one s i g Matt i n Man {}
s i g Marr i ed i n Person {

spouse : one Marr i ed
}

How would you use join to find Matt’s children or grandchildren ?

Matt . c h i l d r e n −− Matt ’ s c h i l d r e n
Matt . c h i l d r e n . c h i l d r e n −− Matt ’ s g r a n d c h i l d r e n

What if we want to find Matt’s descendants?

Introduction to Alloy: Constraints 12 / 34

Example: family structure

How would you model the constraint:

Every married person has one spouse

a l l p : Mar r i ed | one p . spouse

A spouse can’t be a sibling

no p : Mar r i ed |
p . spouse i n p . s i b l i n g s

Introduction to Alloy: Constraints 13 / 34

Example: family structure

How would you model the constraint:

Every married person has one spouse

a l l p : Mar r i ed | one p . spouse

A spouse can’t be a sibling

no p : Mar r i ed |
p . spouse i n p . s i b l i n g s

Introduction to Alloy: Constraints 13 / 34

Example: family structure

How would you model the constraint:

Every married person has one spouse

a l l p : Mar r i ed | one p . spouse

A spouse can’t be a sibling

no p : Mar r i ed |
p . spouse i n p . s i b l i n g s

Introduction to Alloy: Constraints 13 / 34

Box Join

p [q]

Semantically identical to dot join, but takes its arguments in different order

p [q] <=> q . p

Example: Matt’s children or grandchildren?

c h i l d r e n [Matt] −− Matt ’ s c h i l d r e n
c h i l d r e n [c h i l d r e n [Matt]] −− Matt ’ s g r a n d c h i l d r e n

Introduction to Alloy: Constraints 14 / 34

Box Join

p [q]

Semantically identical to dot join, but takes its arguments in different order

p [q] <=> q . p

Example: Matt’s children or grandchildren?

c h i l d r e n [Matt] −− Matt ’ s c h i l d r e n
c h i l d r e n [c h i l d r e n [Matt]] −− Matt ’ s g r a n d c h i l d r e n

Introduction to Alloy: Constraints 14 / 34

Transpose

˜p

Take the mirror image of the relation p

The reverse the order of atoms in each tuple

Example:

p = {(a0 , a1 , a2 , a3) , (b0 , b1 , b2 , b3)}
˜p = {(a3 , a2 , a1 , a0) , (b3 , b2 , b1 , b0)}

Example: Matt’s parents or grand parents?

˜ c h i l d r e n [Matt] −− Matt ’ s p a r e n t s
˜ c h i l d r e n [˜ c h i l d r e n [Matt]] −− Matt ’ s g r andpa r en t s

Introduction to Alloy: Constraints 15 / 34

Transpose

˜p

Take the mirror image of the relation p

The reverse the order of atoms in each tuple

Example:

p = {(a0 , a1 , a2 , a3) , (b0 , b1 , b2 , b3)}
˜p = {(a3 , a2 , a1 , a0) , (b3 , b2 , b1 , b0)}

Example: Matt’s parents or grand parents?

˜ c h i l d r e n [Matt] −− Matt ’ s p a r e n t s
˜ c h i l d r e n [˜ c h i l d r e n [Matt]] −− Matt ’ s g r andpa r en t s

Introduction to Alloy: Constraints 15 / 34

Transitive Closure

ˆ r

Intuitively, the transitive closure of a relation r: S x S is what you get when
you keep navigating through r until you can’t go any farther

ˆ r = r + r . r + r . r . r + . . .

Introduction to Alloy: Constraints 16 / 34

Example: family structure

What if we want to find Matt’s ancestors or descendants ?

Matt . ˆ c h i l d r e n // Matt ’ s d e s c endan t s
Matt . ˆ (˜ c h i l d r e n) // Matt ’ s a n c e s t o r s

How to express the constraint “No person can be their own ancestor?”

no p : Person | p i n p . ˆ (˜ c h i l d r e n)

Introduction to Alloy: Constraints 17 / 34

Example: family structure

What if we want to find Matt’s ancestors or descendants ?

Matt . ˆ c h i l d r e n // Matt ’ s d e s c endan t s
Matt . ˆ (˜ c h i l d r e n) // Matt ’ s a n c e s t o r s

How to express the constraint “No person can be their own ancestor?”

no p : Person | p i n p . ˆ (˜ c h i l d r e n)

Introduction to Alloy: Constraints 17 / 34

Example: family structure

What if we want to find Matt’s ancestors or descendants ?

Matt . ˆ c h i l d r e n // Matt ’ s d e s c endan t s
Matt . ˆ (˜ c h i l d r e n) // Matt ’ s a n c e s t o r s

How to express the constraint “No person can be their own ancestor?”

no p : Person | p i n p . ˆ (˜ c h i l d r e n)

Introduction to Alloy: Constraints 17 / 34

Reflexive-transitive Closure

∗ r = ˆ r + iden

Intuitively, the transitive closure of a relation r: S x S is what you get when
you keep navigating through r until you can’t go any farther

∗ r = id en + r + r . r + r . r . r + . . .

Introduction to Alloy: Constraints 18 / 34

Arrow Product

p −> q

p and q are two relations

p -> q is the relation you get by taking every combination of a tuple from p
and a tuple from q and concatenating them (same as flat cross product)

Example

Name = {(N0) , (N1)}
Addr = {(D0) , (D1)}
Book = {(B0)}

Name −> Addr = {(N0 ,D0) , (N0 ,D1) , (N1 ,D0) , (N1 ,D1)}
Book −> Name −> Addr =

{(B0 ,N0 ,D0) , (B0 ,N0 ,D1) , (B0 ,N1 ,D0) , (B0 ,N1 ,D1)}

Introduction to Alloy: Constraints 19 / 34

Domain and Image restrictions

The restriction operators are used to filter relations to a given domain or
image

If s is a set and r is a relation then

s <: r contains tuples of r starting with an element in s
r :> s contains tuples of r ending with an element in s

Examples

Man = {(M0) , (M1) , (M2) , (M3)}
Woman = {(W0) , (W1)}
c h i l d r e n = {(M0,M1) , (M0,M2) , (M3,W0) , (W1,M1)}
// f a t h e r−c h i l d
Man <: c h i l d r e n = {(M0,M1) , (M0,M2) , (M3,W0)}
// parent−son
c h i l d r e n :> Man = {(M0,M1) , (M0,M2) , (W1,M1)}

Introduction to Alloy: Constraints 20 / 34

Override

p ++ q

p and q are two relations of arity two or more

the result is like the union between p and q except that tuples of q can
replace tuples of p; any tuple in p that matches a tuple in q starting with the
same element is dropped

p ++ q = p − (domain (q) <: p) + q

Example

o ldAddr = {(N0 ,D0) , (N1 ,D1) , (N1 ,D2)}
newAddr = {(N1 ,D4) , (N3 ,D3)}
o ldAddr ++ newAddr = {(N0 ,D0) , (N1 ,D4) , (N3 ,D3)}

Introduction to Alloy: Constraints 21 / 34

Operator precederce

From lower to higher:

| |
<=>
=>
&&
!
= != i n
+ −
++
&
−>
<:
:>
[]
.
˜ ∗ ˆ

Introduction to Alloy: Constraints 22 / 34

Set Comprehension

{ x : S | F }

the set of values drawn from set S for which F holds

How would use the comprehension notation to specify the set of people that
have the same parents as Matt?

{ q : Person | q . ˜ c h i l d r e n = matt . ˜ c h i l d r e n }

Introduction to Alloy: Constraints 23 / 34

Set Comprehension

{ x : S | F }

the set of values drawn from set S for which F holds

How would use the comprehension notation to specify the set of people that
have the same parents as Matt?

{ q : Person | q . ˜ c h i l d r e n = matt . ˜ c h i l d r e n }

Introduction to Alloy: Constraints 23 / 34

Example: family structure

How to express the constraint “A person P’s siblings are those people, other than
P, with the same parents as P”

a l l p : Person |
p . s i b l i n g s =

{q : Person | p . ˜ c h i l d r e n = q . ˜ c h i l d r e n } − p

Introduction to Alloy: Constraints 24 / 34

Example: family structure

How to express the constraint “A person P’s siblings are those people, other than
P, with the same parents as P”

a l l p : Person |
p . s i b l i n g s =

{q : Person | p . ˜ c h i l d r e n = q . ˜ c h i l d r e n } − p

Introduction to Alloy: Constraints 24 / 34

Functions and Predicates

Parametrized macros for terms and formulas

Can be named and reused in different contexts (facts, assertions and
conditions of run)

Can have zero or more parameters

Used to factor out common patterns

Functions are good for set expressions you want to reuse in different contexts

Predicates are good for formulas you want to reuse in different contexts

Introduction to Alloy: Constraints 25 / 34

Functions

A named set expression, with zero or more parameters

The parents relation:

fun s i s t e r s [p : Person] : Woman {
{w: Woman | w i n p . s i b l i n g s } }

fun pa r e n t s [] : Person −> Person {˜ c h i l d r e n }

Example in a formula:

a l l p : Person |
p . s i b l i n g s =

{q : Person | p . p a r e n t s = q . p a r e n t s } − p

Introduction to Alloy: Constraints 26 / 34

Predicates

A named formula, with zero or more parameters

The blood-related relation:

pred B loodRe la t ed [p : Person , q : Person] {
some (p .∗ pa r e n t s & q .∗ pa r e n t s)

}

Example in a formula:

no p : Mar r i ed | BloodRe la t ed [p , p . spouse]

Introduction to Alloy: Constraints 27 / 34

Let

l e t x = e | A

You can factor expressions out

Each occurrence of the variable x will be replaced by the expression e in A

Example: “Each married peson has one spouse”

a l l p : Mar r i ed |
l e t q = p . spouse | one q

Introduction to Alloy: Constraints 28 / 34

Facts

Additional constraints on signatures and fields are expressed in Alloy as facts

fac t Name {
F1
F2
. . .

}

AA looks for instances of a model that also satisfy all of its facts

Introduction to Alloy: Constraints 29 / 34

Example Facts

No person can be their own ancestor

fac t s e l f A n c e s t o r {
no p : Person | p i n p . ˆ p a r e n t s

}

a persons’s siblings are other persons with the same parents

fac t s i b l i n g s D e f i n i t i o n {
a l l p : Person |

p . s i b l i n g s =
{q : Person | p . p a r e n t s = q . p a r e n t s } − p

}

Introduction to Alloy: Constraints 30 / 34

Example Facts

No person can be their own ancestor

fac t s e l f A n c e s t o r {
no p : Person | p i n p . ˆ p a r e n t s

}

a persons’s siblings are other persons with the same parents

fac t s i b l i n g s D e f i n i t i o n {
a l l p : Person |

p . s i b l i n g s =
{q : Person | p . p a r e n t s = q . p a r e n t s } − p

}

Introduction to Alloy: Constraints 30 / 34

Example Facts

No person can be their own ancestor

fac t s e l f A n c e s t o r {
no p : Person | p i n p . ˆ p a r e n t s

}

a persons’s siblings are other persons with the same parents

fac t s i b l i n g s D e f i n i t i o n {
a l l p : Person |

p . s i b l i n g s =
{q : Person | p . p a r e n t s = q . p a r e n t s } − p

}

Introduction to Alloy: Constraints 30 / 34

Example Facts

No person can be their own ancestor

fac t s e l f A n c e s t o r {
no p : Person | p i n p . ˆ p a r e n t s

}

a persons’s siblings are other persons with the same parents

fac t s i b l i n g s D e f i n i t i o n {
a l l p : Person |

p . s i b l i n g s =
{q : Person | p . p a r e n t s = q . p a r e n t s } − p

}

Introduction to Alloy: Constraints 30 / 34

Example Facts

fac t s o c i a l {
−− Every mar r i ed pe r son has one spouse
a l l p : Mar r i ed | one p . spouse

−− A spouse can ’ t be a s i b l i n g
no p : Mar r i ed | p . spouse i n p . s i b l i n g s

−− A per son can ’ t be mar r i ed to a b lood r e l a t i v e
no p : Mar r i ed |

some (p .∗ pa r e n t s & (p . spouse) . ∗ pa r e n t s)
}

Introduction to Alloy: Constraints 31 / 34

Assertions

Often we believe that our model entails certain constraints that are not
directly expressed

some A && (A in B) entails some B

We can define these constraints as assertions and ask the analyzer to check if
they hold (similarly specifying checking scopes)

as se r t myAsse r t i on { some B }
check myAsse r t i on f o r 5

If the constraint in an assertion does not hold, the analyzer will produce a
counterexample instance

If you expect the constraint to hold but it does not, you can either

make it into a fact, or

refine your model until the assertion holds

Introduction to Alloy: Constraints 32 / 34

Example Assertions

No person has a parent that is also a sibling

as se r t a1 { a l l p : Person |
no p . p a r e n t s & p . s i b l i n g s }

A person’s siblings are their siblings’ siblings

as se r t a2 { a l l p : Person |
p . s i b l i n g s = p . s i b l i n g s . s i b l i n g s }

No person shares a common ancestor with their spouse (i.e., spouse isn’t
related by blood)

as se r t a3 { no p : Mar r i ed |
some (p . ˆ p a r e n t s & p . spouse . ˆ p a r e n t s) }

Introduction to Alloy: Constraints 33 / 34

Example Assertions

No person has a parent that is also a sibling

as se r t a1 { a l l p : Person |
no p . p a r e n t s & p . s i b l i n g s }

A person’s siblings are their siblings’ siblings

as se r t a2 { a l l p : Person |
p . s i b l i n g s = p . s i b l i n g s . s i b l i n g s }

No person shares a common ancestor with their spouse (i.e., spouse isn’t
related by blood)

as se r t a3 { no p : Mar r i ed |
some (p . ˆ p a r e n t s & p . spouse . ˆ p a r e n t s) }

Introduction to Alloy: Constraints 33 / 34

Example Assertions

No person has a parent that is also a sibling

as se r t a1 { a l l p : Person |
no p . p a r e n t s & p . s i b l i n g s }

A person’s siblings are their siblings’ siblings

as se r t a2 { a l l p : Person |
p . s i b l i n g s = p . s i b l i n g s . s i b l i n g s }

No person shares a common ancestor with their spouse (i.e., spouse isn’t
related by blood)

as se r t a3 { no p : Mar r i ed |
some (p . ˆ p a r e n t s & p . spouse . ˆ p a r e n t s) }

Introduction to Alloy: Constraints 33 / 34

Example Assertions

No person has a parent that is also a sibling

as se r t a1 { a l l p : Person |
no p . p a r e n t s & p . s i b l i n g s }

A person’s siblings are their siblings’ siblings

as se r t a2 { a l l p : Person |
p . s i b l i n g s = p . s i b l i n g s . s i b l i n g s }

No person shares a common ancestor with their spouse (i.e., spouse isn’t
related by blood)

as se r t a3 { no p : Mar r i ed |
some (p . ˆ p a r e n t s & p . spouse . ˆ p a r e n t s) }

Introduction to Alloy: Constraints 33 / 34

Example Assertions

No person has a parent that is also a sibling

as se r t a1 { a l l p : Person |
no p . p a r e n t s & p . s i b l i n g s }

A person’s siblings are their siblings’ siblings

as se r t a2 { a l l p : Person |
p . s i b l i n g s = p . s i b l i n g s . s i b l i n g s }

No person shares a common ancestor with their spouse (i.e., spouse isn’t
related by blood)

as se r t a3 { no p : Mar r i ed |
some (p . ˆ p a r e n t s & p . spouse . ˆ p a r e n t s) }

Introduction to Alloy: Constraints 33 / 34

Example Assertions

No person has a parent that is also a sibling

as se r t a1 { a l l p : Person |
no p . p a r e n t s & p . s i b l i n g s }

A person’s siblings are their siblings’ siblings

as se r t a2 { a l l p : Person |
p . s i b l i n g s = p . s i b l i n g s . s i b l i n g s }

No person shares a common ancestor with their spouse (i.e., spouse isn’t
related by blood)

as se r t a3 { no p : Mar r i ed |
some (p . ˆ p a r e n t s & p . spouse . ˆ p a r e n t s) }

Introduction to Alloy: Constraints 33 / 34

Acknowledgments

These notes are heavily based on notes from Matt Dwyer, John Hatcliff, Rod
Howell, Laurence Pilard and Cesare Tinelli.

Introduction to Alloy: Constraints 34 / 34

