Métodos Formais
2025.2

Introduction to Alloy: Constraints

Area de Teoria DCC/UFMG

Model weaknesses

@ The model is underconstrained
o It doesn’'t match our domain knowledge
o Asymmetric marriage, self child/sibling, asymmetric siblings, multiple fathers...

o We can add constraints to enrich the model

@ Under-constrained models are common early on in the development process

o AA gives us quick feedback on weaknesses in our model

e We can incrementally add constraints until we are satisfied with it

Introduction to Alloy: Constraints 1/34

Adding constraints

e We'd like to enforce the following constraints (concerning biology)

o No person can be their own parent (or more generally, their own ancestor)
e No person can have more than one father or mother

o A person’s siblings are those with the same parents

@ We could also enforce the following social constraints

e The spouse relation is symmetric

e A man's wife cannot be one of his siblings

Introduction to Alloy: Constraints 2 /34

Alloy Constraints

@ Signatures and fields define classes (of atoms) and relations between them

@ Alloy models can be refined further by adding formulas expressing additional
constraints over those classes and relations

@ Several operators are available to express both logical and relational
constraints

Introduction to Alloy: Constraints 3/34

Logical operators

The usual logical operators are available, often in two forms

— not ! (Boolean) negation
— and && conjunction
— or H disjunction
— implies = implication
— else alternative
— <= equivalence

Introduction to Alloy: Constraints 4 /34

Quantifiers

Alloy includes a rich collection of quantifiers

Introduction to Alloy: Constraints

B B B i |

holds
holds
holds
holds
holds

for
for
for
for
for

every x in S

some x in S

no x in S

at most one x in S
exactly one x in S

5 /34

Predefined sets in Alloy

@ There are three predefined set constants:

e none : empty set
e univ : universal set
e ident : identity relation

@ Example. For a model instance with just:

Man = {(MO),(M1),(M2)}
Woman = {(WO0) ,(W1)}

the constants have the values

none = {}
univ = {(M0),(M1)

(M2)
ident ={(M0,M0) , (M1,M1

Introduction to Alloy: Constraints

). (W1,W1)}

6/34

Everything is a Set in Alloy

@ There are no scalars

o We never speak directly about elements (or tuples) of relations
o Instead, we can use singleton relations:

one sig Matt extends Person

@ Quantified variables always denote singleton relations:
all x : S| ... x

x = {t} for some element t of S

Introduction to Alloy: Constraints 7 /34

Set operators

+ union

& intersection
— difference
in subset

= equality

= disequality

@ Example. Married men:

Married & Man

Relational operators

Introduction to Alloy: Constraints

arrow (cross product)
transpose

dot join

box join

transitive closure

reflexive —transitive closure
domain restriction

image restriction

override

9/34

Relational composition (Join)

@ p and q are two relations that are not both unary

@ p.q is the relation you get by taking every combination of a tuple from p and
a tuple from q and adding their join, if it exists

Introduction to Alloy: Constraints 10 / 34

How to join tuples?

@ What is the join of theses two tuples 7

(al,...,am)
(bl,...,bn)

If am # b1, then join is undefined

o If am = bl, then it is

(al,...,am—=1,b2,...,bn)
o Examples.
(a,b).(a,c,d) undefined
(a,b).(b,c,d) = (a,c,d)
e What about (a).(a)?

Introduction to Alloy: Constraints 11 / 34

How to join tuples?

@ What is the join of theses two tuples 7

(al,...,am)
(bl,...,bn)

If am # b1, then join is undefined

o If am = bl, then it is

(al,...,am—=1,b2,...,bn)
o Examples.
(a,b).(a,c,d) undefined
(a,b).(b,c,d) = (a,c,d)
@ What about (a).(a)? Not defined!

o t1.t2 is not defined if t1 and t2 are both unary tuples

Introduction to Alloy: Constraints 11 / 34

Example: family structure

abstract sig Person {
children: set Person,
siblings: set Person
}
sig Man, Woman, Other extends Person {}
one sig Matt in Man {}
sig Married in Person {
spouse: one Married

}

How would you use join to find Matt's children or grandchildren ?

Introduction to Alloy: Constraints 12 / 34

Example: family structure

abstract sig Person {
children: set Person,
siblings: set Person
}
sig Man, Woman, Other extends Person {}
one sig Matt in Man {}
sig Married in Person {
spouse: one Married

}

How would you use join to find Matt's children or grandchildren ?

Matt. children — Matt's children
Matt. children.children — Matt’'s grandchildren

What if we want to find Matt’'s descendants?

Introduction to Alloy: Constraints 12 / 34

Example: family structure

How would you model the constraint:

Every married person has one spouse

Example: family structure

How would you model the constraint:

Every married person has one spouse

all p: Married | one p.spouse

A spouse can't be a sibling

Introduction to Alloy: Constraints 13 / 34

Example: family structure

How would you model the constraint:

Every married person has one spouse

all p: Married | one p.spouse

A spouse can't be a sibling

no p: Married |
p.spouse in p.siblings

Introduction to Alloy: Constraints

13 /34

Box Join

plal

@ Semantically identical to dot join, but takes its arguments in different order

pla] <=> q.p

@ Example: Matt's children or grandchildren?

Introduction to Alloy: Constraints 14 / 34

Box Join

plal

@ Semantically identical to dot join, but takes its arguments in different order

pla] <=> q.p

@ Example: Matt's children or grandchildren?

children [Matt] — Matt’'s children
children[children[Matt]] — Matt’s grandchildren

Introduction to Alloy: Constraints 14 / 34

Transpose

@ Take the mirror image of the relation p

o The reverse the order of atoms in each tuple

o Example:

p = {(a0,al,a2,a3),(b0,bl,b2,b3)}
“p = {(a3,a2,al,a0),(b3,b2,bl,b0)}

@ Example: Matt's parents or grand parents?

Introduction to Alloy: Constraints

15 / 34

Transpose

@ Take the mirror image of the relation p

o The reverse the order of atoms in each tuple

o Example:

p = {(a0,al,a2 a3),(b0,bl,b2,b3)}
“p = {(a3,a2,al,a0),(b3,b2,bl,b0)}

@ Example: Matt's parents or grand parents?

“children [Matt] — Matt's parents
“children [~ children[Matt]] — Matt's grandparents

Introduction to Alloy: Constraints 15 / 34

Transitive Closure

@ Intuitively, the transitive closure of a relation r: S x S is what you get when
you keep navigating through r until you can't go any farther

~

r=r +r.r +r.r.r +

Introduction to Alloy: Constraints 16 / 34

Example: family structure

What if we want to find Matt's ancestors or descendants ?

Example: family structure

What if we want to find Matt’'s ancestors or descendants ?

Matt.” children // Matt's descendants
Matt.” (" children) // Matt's ancestors

How to express the constraint “No person can be their own ancestor?”

Introduction to Alloy: Constraints 17 / 34

Example: family structure

What if we want to find Matt’'s ancestors or descendants ?

Matt.” children // Matt's descendants
Matt.” (" children) // Matt's ancestors

How to express the constraint “No person can be their own ancestor?”

no p: Person | p in p." (" children)

Introduction to Alloy: Constraints 17 / 34

Reflexive-transitive Closure

*r = "r + iden

@ Intuitively, the transitive closure of a relation r: S x S is what you get when
you keep navigating through r until you can't go any farther

¥r = iden -+ r + r.r + r.r.r +

Introduction to Alloy: Constraints 18 / 34

Arrow Product

P—>4q

@ p and q are two relations

@ p —> q is the relation you get by taking every combination of a tuple from p
and a tuple from q and concatenating them (same as flat cross product)

@ Example
Name = {(NO),(N1)}
Addr = {(D0),(D1)}
Book = {(B0)}

Name —> Addr = {(NO,DO0),(NO,D1),(N1,D0),(N1,D1)}
Book —> Name —> Addr =
{(B0,NO,DO),(B0,N0,D1),(B0,N1,D0),(B0,N1,D1)}

Introduction to Alloy: Constraints 19 / 34

Domain and Image restrictions

@ The restriction operators are used to filter relations to a given domain or
image

o If sis a set and r is a relation then

e s <: r contains tuples of r starting with an element in s
e r :> s contains tuples of r ending with an element in s

@ Examples

Man = {(M0),(M1),(M2),(M3)}

Woman = {(W0) ,(W1)}

children = {(M0,M1),(M0,M2),(M3,W0) (W1, M1)}
// father—child

Man <: children = {(MO,M1),(M0,M2),(M3,W0)}
// parent—son

children :> Man = {(M0,M1),(MO0,M2),(W1,M1)}

Introduction to Alloy: Constraints 20 / 34

Override

P ++ 4

@ p and q are two relations of arity two or more

@ the result is like the union between p and g except that tuples of q can

replace tuples of p; any tuple in p that matches a tuple in g starting with the
same element is dropped

@ Example

oldAddr = {(NO,D0),(N1,D1),(N1,D2)}
newAddr = {(N1,D4),(N3,D3)}
oldAddr ++ newAddr = {(NO,DO),(N1,D4),(N3,D3)}

Introduction to Alloy: Constraints 21/ 34

Operator precederce

From lower to higher:

||
<=>
=>

Set Comprehension

{x:S | F}

@ the set of values drawn from set S for which F holds

@ How would use the comprehension notation to specify the set of people that
have the same parents as Matt?

Introduction to Alloy: Constraints 23 /34

Set Comprehension

{x:S | F}

@ the set of values drawn from set S for which F holds

@ How would use the comprehension notation to specify the set of people that
have the same parents as Matt?

{ q: Person | q.7 children = matt.” children }

Introduction to Alloy: Constraints 23 /34

Example: family structure

How to express the constraint “A person P’s siblings are those people, other than
P, with the same parents as P"

Introduction to Alloy: Constraints 24 / 34

Example: family structure

How to express the constraint “A person P’s siblings are those people, other than
P, with the same parents as P"

all p: Person |
p.siblings =
{q: Person | p."children = q." children} — p

Introduction to Alloy: Constraints 24 / 34

Functions and Predicates

@ Parametrized macros for terms and formulas

o Can be named and reused in different contexts (facts, assertions and
conditions of run)

e Can have zero or more parameters

o Used to factor out common patterns

@ Functions are good for set expressions you want to reuse in different contexts

@ Predicates are good for formulas you want to reuse in different contexts

Introduction to Alloy: Constraints 25/ 34

Functions

@ A named set expression, with zero or more parameters

@ The parents relation:
fun sisters [p: Person] : Woman {

{w: Woman | w in p.siblings} }

fun parents [] : Person — Person {"children}

@ Example in a formula:

all p: Person |
p.siblings =
{q: Person | p.parents = q.parents} — p

Introduction to Alloy: Constraints 26 / 34

Predicates

@ A named formula, with zero or more parameters

@ The blood-related relation:

pred BloodRelated [p: Person, q: Person] {
some (p.xparents & q.xparents)
}

@ Example in a formula:

no p: Married | BloodRelated[p, p.spouse]

Introduction to Alloy: Constraints 27 / 34

Let

let x =¢ | A

@ You can factor expressions out

@ Each occurrence of the variable x will be replaced by the expression e in A

@ Example: “Each married peson has one spouse”

all p: Married |
let ¢ = p.spouse | one q

Introduction to Alloy: Constraints 28 / 34

Facts

o Additional constraints on signatures and fields are expressed in Alloy as facts

fact Name {
F1
F2

@ AA looks for instances of a model that also satisfy all of its facts

Introduction to Alloy: Constraints 29 / 34

Example Facts

@ No person can be their own ancestor

Example Facts

@ No person can be their own ancestor

fact selfAncestor {
no p: Person | p in p." parents

}

Example Facts

@ No person can be their own ancestor

fact selfAncestor {
no p: Person | p in p." parents

}

@ a persons's siblings are other persons with the same parents

Introduction to Alloy: Constraints 30/ 34

Example Facts

@ No person can be their own ancestor

fact selfAncestor {
no p: Person | p in p." parents

}

@ a persons's siblings are other persons with the same parents

fact siblingsDefinition {
all p: Person |
p.siblings =
{q: Person | p.parents = q.parents} — p

Introduction to Alloy: Constraints 30/ 34

Example Facts

fact social {

— Every married person has one spouse

all p: Married

— A spouse can't

no p: Married

p.

— A person can't

no p: Married

one p.spouse

be a sibling
spouse in p.siblings

be married to a blood relative

some (p.xparents & (p.spouse).*xparents)

Introduction to Alloy: Constraints

31/ 34

Assertions

@ Often we believe that our model entails certain constraints that are not
directly expressed

o some A &% (A in B) entails some B
@ We can define these constraints as assertions and ask the analyzer to check if
they hold (similarly specifying checking scopes)

assert myAssertion { some B }
check myAssertion for 5

@ If the constraint in an assertion does not hold, the analyzer will produce a
counterexample instance

o If you expect the constraint to hold but it does not, you can either

e make it into a fact, or

o refine your model until the assertion holds

Introduction to Alloy: Constraints 32 /34

Example Assertions

@ No person has a parent that is also a sibling

Example Assertions

@ No person has a parent that is also a sibling

assert al { all p: Person |
no p.parents & p.siblings }

Introduction to Alloy: Constraints 33 /34

Example Assertions

@ No person has a parent that is also a sibling

assert al { all p: Person |
no p.parents & p.siblings }

@ A person's siblings are their siblings’ siblings

Introduction to Alloy: Constraints 33 /34

Example Assertions

@ No person has a parent that is also a sibling

assert al { all p: Person |
no p.parents & p.siblings }

@ A person's siblings are their siblings’ siblings

assert a2 { all p: Person |
p.siblings = p.siblings.siblings }

Introduction to Alloy: Constraints 33 /34

Example Assertions

@ No person has a parent that is also a sibling

assert al { all p: Person |
no p.parents & p.siblings }

@ A person's siblings are their siblings’ siblings

assert a2 { all p: Person |
p.siblings = p.siblings.siblings }

@ No person shares a common ancestor with their spouse (i.e., spouse isn't
related by blood)

Introduction to Alloy: Constraints 33 /34

Example Assertions

@ No person has a parent that is also a sibling

assert al { all p: Person |
no p.parents & p.siblings }

@ A person's siblings are their siblings’ siblings

assert a2 { all p: Person |
p.siblings = p.siblings.siblings }

@ No person shares a common ancestor with their spouse (i.e., spouse isn't
related by blood)

assert a3 { no p: Married |
some (p." parents & p.spouse.” parents) }

Introduction to Alloy: Constraints 33 /34

Acknowledgments

These notes are heavily based on notes from Matt Dwyer, John Hatcliff, Rod
Howell, Laurence Pilard and Cesare Tinelli.

Introduction to Alloy: Constraints 34 /34

