Métodos Formais
2025.2

Introduction to Alloy

Area de Teoria DCC/UFMG



Outline

@ Introduction to basic Alloy constructs using a simple example of a static
model

o How to define sets, subsets, relations with multiplicity constraints

e How to use Alloy’'s quantifiers and predicate forms

@ Basic use of the Alloy Analyzer 6

e Loading, running, and analyzing a simple Alloy specification
o Adjusting basic tool parameters

e Using the visualization tool to view instances of models

Introduction to Alloy 1/35



Why was Alloy created?

o Lightweight
e Small and easy to use

e capable of expressing common properties tersely and naturally

@ Precise

e having a simple and uniform mathematical semantics

@ Tractable

e amenable to efficient and fully automatic semantic analysis

@ within scope limits

Introduction to Alloy 2 /35



What is Alloy used for?

@ A textual modeling language aimed at expressing structural and behavioral
properties of software systems

@ Not meant for modeling code architecture

@ But an Alloy specification can be closely related to an OO implementation

Introduction to Alloy 3/35



Example applications

@ The Alloy distribution comes with several sample models to illustrate the use
of Alloy’s constructs

@ Examples
e Specification of a distributed spanning tree
o Model of a generic file system
o Model of a generic file synchronizer

o Tower of Hanoi model

Introduction to Alloy 4/35



In summary

@ Alloy is general enough that it can model

e any domain of individuals

o relations between them

@ We will start with a few simple examples

o Not necessarily about software

Introduction to Alloy 5/ 35



Example: Family structure

We want to:
o Model parent/child relationships as primitive relations
@ Model spousal relationships as primitive relations
@ Model relationships such as siblings as derived relations

e Enforce biological constraints via first-order predicates (e.g., people are not
their own parents)

e Enforce social constraints via first-order predicates (e.g., a spouse isn't a
sibling)

@ Confirm or refute the existence of certain derived relationships (e.g., no one
has a spouse with whom they share a parent)

Introduction to Alloy 6 /35



Atoms and Relations

@ In Alloy, everything is built from atoms and relations

@ An atom is a primitive entity that is

o indivisible: it cannot be broken down into smaller parts

e immutable: its properties do not change over time

e uninterpreted: it does not have any built in property (the way numbers do for
example)

@ A relation is a structure that relates atoms. It is a set of tuples, each tuple
being a sequence of atoms

Introduction to Alloy 7 /35



Atoms and Relations: Examples

An address book for an email client with a mapping from names to addresses

FriendBook WorkBook
Ted -> ted@gmail.com Pilard => Ipilard@ufmg.br
Ryan -> ryan@hotmail.com Ryan -> ryan@ufmb.br

@ Unary relations: a set of names, a set of addresses and a set of books

Name = {(NO), (N1), (N2)}
Addr = {(D0), (D1)}
Book = {(B0), (B1)}

@ A binary relation from names to addresses
address = {(N0,D0),(N1,D1)}
o A ternary relation from books to names to addresses
address = {(B0,N0,D0),(B0,N1,D1),(B1,N1,D2)}

Introduction to Alloy 8 /35



Relations

@ Size of a relation: the number of tuples in the relation

@ Arity of a relation: the number of atoms in each tuple of the relation

e relations with arity 1, 2, and 3 are said to be unary, binary, and ternary
relations

o Examples.
e relation of arity 1 and size 1:
myName = {(NO)}
e relation of arity 2 and size 3:
address = {(N0,D0),(N1,D1),(N2,D1))}

Introduction to Alloy 9 /35



Main components of Alloy models

Signatures and Fields

@ Predicates and Functions

@ Facts

@ Assertions

@ Commands and scopes

Introduction to Alloy 10 / 35



Signatures and Fields

@ Signatures

o Describe classes of entities we want to reason about

o Sets defined in signatures are fixed (dynamic aspects can be modeled by
time-dependent relations)

o Fields

o Define relations between signatures

@ Simple constraints

o Multiplicities on signatures

o Multiplicities on relations

Introduction to Alloy 11 /35



Signatures

@ A signature introduces a set of atoms

@ The declaration

sig A {}

introduces a set named A

@ A set can be introduced as an extension of another; thus
sig Al extends A {}

introduces a set Al that is a subset of A

Introduction to Alloy 12 / 35



Signatures

sig A {}
sig B {}
sig Al extends A {}
sig A2 extends A {}

@ Al and A2 are extensions of A

@ A signature declared independently of any other one is a top-level signature,
eg.,Aand B

o Extensions of the same signature are mutually disjoint, as are top-level
signatures

Introduction to Alloy 13 / 35



Signatures

abstract sig A {}

sig B {}
sig Al extends A {}
sig A2 extends A {}

@ A signature can be introduced as a subset of another

sig A3 in A {}
sig A2 extends A {}

@ An abstract signature has no elements except those belonging to its
extensions or subsets

@ All extensions of an abstract signature A form a partition of A

Introduction to Alloy 14 / 35



Fields

@ Relations are declared as fields of signatures
o Writing
sig A {f: e}

introduces a relation f of type A x e, where e is an expression denoting a
product of signatures

e Examples: (with signatures A, B, C)
o Binary relation:
sig A {fl: B}
where f1 is a subset of A x B
o Ternary relation:
sig A {f2: B — C}

where 2 is a subset of A x B x C

Introduction to Alloy 15 / 35



Example signatures and fields

A family structure:

abstract sig Person {
children: Person,
siblings: Person

}
sig Man, Woman, Other extends Person {}

sig Married in Person {
spouse: Married

}

Introduction to Alloy 16 / 35



Example: family structure

A family structure:

abstract sig Person {}

sig Man extends Person {}
sig Woman extends Person {}
sig Other extends Person {}
sig Married in Person {}

Introduction to Alloy 17 / 35



Example: family structure

A family structure:

abstract sig Person {
siblings: Person

}

sig Man extends Person {}

sig Woman extends Person {}

sig Other extends Person {}

sig Married in Person {}

Introduction to Alloy

18/ 35



Example: family structure

A family structure:

abstract sig Person {
siblings: Person

}

sig Man extends Person {}

sig Woman extends Person {}

sig Other extends Person {}

sig Married in Person {}

An example of an instance is

Person = {(PO), (P1)}
Man = {(PO), (P1)}

Married = {}
Woman = {}
Other = {}

siblings = {(PO,P1), (P1,PO)}

@ siblings is a binary relation, i.e., a subset of Person x Person

@ In the instance, PO and P1 are siblings
Introduction to Alloy 18 / 35



run Command

@ Used to ask AA to generate an instance of the model

o May include conditions

o Used to guide AA to pick model instances with certain characteristics

e E.g., force certain sets and relations to be non-empty

e In this case, not part of the “true” specification

@ Specific for that run

@ We can use conditions to encode realism constraints to e.g.,

o Force generated models to include at least one married person, or one married
man, etc.

Introduction to Alloy 19 / 35



run Command

@ To analyze a model, you add a run command and instruct AA to execute it.

o the run command tells the tool to search for an instance of the model

e you may also give a scope to signatures bounds the size of instances that will
be considered

@ The scope:

e Limits the size of instances considered to make instance finding feasible
o Represents the maximum number of elements in a top-level signature

o Default value is 3 for each top-level signature

@ AA executes only the first run command in a file

Introduction to Alloy 20/ 35



run Example

— The simplest run command
— The scope of every signature is 3

run {}

— The scope scope of every signature is 5
run {} for 5

— With conditions forcing each set to be populated
— Setting the scope to 2
run {some Man && some Woman && some Married} for 2

— Other scenarios
run {some Woman && no Man} for 7
run {some Man && some Married && no Woman}

Introduction to Alloy

21/ 35



Multiplicities

@ Allow us to constrain the sizes of sets

o A multiplicity keyword placed before a signature declaration constrains the
number of elements in the signature

m sig A {}

o We can alo make multiplicities constraints on fields:

sig A {f: m e}
sig A {f: el m—> n e2}

@ There are four multiplicities
set : any number

some : one or more
lone : zero or one

one : exactly one

Introduction to Alloy 22 /35



Multiplicities: Examples

o Without multiplicity:

o A set of colors, each of which is red, yellow or green abstract

sig Color {}
sig Red, Yellow, Green extends Color {}

Introduction to Alloy 23 /35



Multiplicities: Examples

o Without multiplicity:

o A set of colors, each of which is red, yellow or green abstract

sig Color {}
sig Red, Yellow, Green extends Color {}

o With multiplicity:

o An enumeration of colors

abstract sig Color {}
one sig Red, Yellow, Green extends Color {}

Introduction to Alloy 23 /35



Multiplicities: Examples

@ A file system in which each directory contains any number of objects, and
each alias points to exactly one object

abstract sig Object {}

sig Directory extends Object {contents: set Object}
sig File extends Object {}

sig Alias in File {to: one Object}

@ The default multiplicity for fields is one, so:

sig A {f: e}
sig A {f: one e}

are equivalent

Introduction to Alloy 24 /35



Multiplicities: Examples

@ A book maps names to addresses

e There is at most one address per Name
e An address is associated to at least one name

sig Name, Addr {}
sig Book {

addr: Name some —> lone Addr
}

Introduction to Alloy 25 /35



Multiplicities: Examples

@ A collection of weather forecasts, each of which has a field weather
associating every city with exactly one weather condition

sig Forecast {weather: City —> one Weather}

sig City {}

abstract sig Weather {}

one sig Rainy, Sunny, Cloudy extends Weather {}

@ Instance:

City = {(BH), (Uberlandia)}

Rainy = {(rainy)}

Sunny = {(sunny)}

Cloudy = {(cloudy)?}

Forecast = {(f1), (£2)}

weather = { (f1, BH, rainy), (f1, Uberlandia, rainy),
(f2, BH, rainy), (f2, Uberlandia, sunny) }

Introduction to Alloy 26 / 35



Multiplicities and Binary Relations

sig S {f: lone T}

@ says that, for each element s of S, f maps s to at most a single value in T

Introduction to Alloy 27 /35



Multiplicities and Binary Relations

sig S {f: lone T}
@ says that, for each element s of S, f maps s to at most a single value in T

o Note this means that f is a partial function

Introduction to Alloy 27 /35



Multiplicities and Binary Relations

sig S {f: lone T}
@ says that, for each element s of S, f maps s to at most a single value in T

o Note this means that f is a partial function

o What if we had
sig S {f: one T}

Introduction to Alloy 27 /35



Multiplicities and Binary Relations

sig S {f: lone T}
@ says that, for each element s of S, f maps s to at most a single value in T

o Note this means that f is a partial function

o What if we had
sig S {f: one T}

o Defines a total function

Introduction to Alloy 27 /35



Multiplicities and Ternary Relations

sig S {f: T — one V}



Multiplicities and Ternary Relations

sig S {f: T — one V}

o for each element s of S, over the triples that start with s: f maps each
T-element to exactly one V-element

Introduction to Alloy 28 / 35



Multiplicities and Ternary Relations

sig S {f: T — one V}

o for each element s of S, over the triples that start with s: f maps each
T-element to exactly one V-element

sig S {f: T lone — V}

Introduction to Alloy 28 / 35



Multiplicities and Ternary Relations

sig S {f: T — one V}

o for each element s of S, over the triples that start with s: f maps each
T-element to exactly one V-element

sig S {f: T lone — V}

@ For each element s of S, over the triples that start with s: f maps at most
one T-element to the same V-element

Introduction to Alloy 28 / 35



Multiplicities and Relations

@ Other kinds of relational structures can be specified using multiplicities

@ Examples

— sig S {f: some T} ... total relation
— sig S {f: set T} ... partial relation
— sig S {f: T set — set V}

— sig S {f: T one — V}

Introduction to Alloy

29 / 35



Cardinality constraints

@ Multiplicities can also be applied to whole expressions denoting relations

@ some e

@ no e

@ lone e

@ one e

Introduction to Alloy

e is non-empty
e is empty
e has at most one tuple

e has exactly one tuple

30 /35



Example: family structure

@ How would you use multiplicities to define the children relation?




Example: family structure

@ How would you use multiplicities to define the children relation?

sig Person {children: set Person}

e Intuition: each person has zero or more children

Introduction to Alloy 31/35



Example: family structure

@ How would you use multiplicities to define the children relation?

sig Person {children: set Person}

e Intuition: each person has zero or more children

@ How would you use multiplicities to define the spouse relation?

Introduction to Alloy 31/35



Example: family structure

@ How would you use multiplicities to define the children relation?

sig Person {children: set Person}

e Intuition: each person has zero or more children

@ How would you use multiplicities to define the spouse relation?

sig Married {spouse: one Married}

e Intuition: each married person has exactly one spouse

Introduction to Alloy 31/35



Size Determination

@ Size determined in a signature declaration has priority on size determined in
scope

o Example:

abstract sig Color {}
one sig red, yellow, green extends color {}
sig Pixel {color: one Color}

run {} for 2

@ The above limits the signature Pixel to 2 elements, but assigns a size of
exactly 3 to Color

Introduction to Alloy 32/35



Model weaknesses

@ The model is underconstrained
o It doesn’'t match our domain knowledge
o Asymmetric marriage, self child/sibling, asymmetric siblings, multiple fathers...

o We can add constraints to enrich the model

@ Under-constrained models are common early on in the development process

o AA gives us quick feedback on weaknesses in our model

e We can incrementally add constraints until we are satisfied with it

Introduction to Alloy 33/35



Adding constraints

e We'd like to enforce the following constraints (concerning biology)

o No person can be their own parent (or more generally, their own ancestor)
e No person can have more than one father or mother

o A person’s siblings are those with the same parents

@ We could also enforce the following social constraints

e The spouse relation is symmetric

e A man's wife cannot be one of his siblings

Introduction to Alloy 34 /35



Acknowledgments

These notes are heavily based on notes from Matt Dwyer, John Hatcliff, Rod
Howell, Laurence Pilard and Cesare Tinelli.

Introduction to Alloy 35 /35



