
CS:4980 Topics in Computer Science II

Introduction to Automated Reasoning

Theory Solvers II

Cesare Tinelli

Spring 2024



Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of
Iowa, and by Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford University.
Adapted by permission.

1 / 39



Overview
SMT solvers can be used to solve arithmetic problems

Linear Programs (LPs) are a particularly interesting class of arithmetic problems, with
stand-alone solvers

Many interesting applications: robotic planning, formal verification, operations
research

Some of the slides are contributed by Guy Katz.

2 / 39



Outline

• QF_LRA

• Linear Programming

• The Simplex algorithm

Readings: DP 5.1-5.2

3 / 39



Review: Theory of Real Arithmetics (TRA)

TRA = ⟨ΣRA,MRA⟩

ΣS
RA = {Real } ΣF

RA = {+,−, ∗,≤} ∪ { q | q is a decimal numeral }

All I ∈ MRA interpret Real as the set R of real numbers, and the function symbols in
the usual way

Quantifier-free linear real arithmetic (QF_LRA):

1. no quantifiers

2. all occurrences of ∗ have at least one argument that is a decimal numeral

Many SMT solvers (e.g., cvc5, Z3) use a version of the Simplex method as the theory
solver for QF_LRA

4 / 39



Review: Theory of Real Arithmetics (TRA)

TRA = ⟨ΣRA,MRA⟩

ΣS
RA = {Real } ΣF

RA = {+,−, ∗,≤} ∪ { q | q is a decimal numeral }

All I ∈ MRA interpret Real as the set R of real numbers, and the function symbols in
the usual way

Quantifier-free linear real arithmetic (QF_LRA):

1. no quantifiers

2. all occurrences of ∗ have at least one argument that is a decimal numeral

Many SMT solvers (e.g., cvc5, Z3) use a version of the Simplex method as the theory
solver for QF_LRA

4 / 39



Review: Theory of Real Arithmetics (TRA)

TRA = ⟨ΣRA,MRA⟩

ΣS
RA = {Real } ΣF

RA = {+,−, ∗,≤} ∪ { q | q is a decimal numeral }

All I ∈ MRA interpret Real as the set R of real numbers, and the function symbols in
the usual way

Quantifier-free linear real arithmetic (QF_LRA):

1. no quantifiers

2. all occurrences of ∗ have at least one argument that is a decimal numeral

Many SMT solvers (e.g., cvc5, Z3) use a version of the Simplex method as the theory
solver for QF_LRA

4 / 39



Linear Programming

A linear program (LP) consists of:

1. An m × n matrix A, the constraint matrix

2. An m-dimensional vector b

3. An n-dimensional vector c, the objective function

Let x a vector of n variables

Goal: Find a solution x that maximizes cTx subject to the linear constraints Ax ≤ b

5 / 39



Linear Programming

A linear program (LP) consists of:

1. An m × n matrix A, the constraint matrix

2. An m-dimensional vector b

3. An n-dimensional vector c, the objective function

Let x a vector of n variables

Goal: Find a solution x that maximizes cTx subject to the linear constraints Ax ≤ b

5 / 39



Linear Programming

A linear program (LP) consists of:

1. An m × n matrix A, the constraint matrix

2. An m-dimensional vector b

3. An n-dimensional vector c, the objective function

Let x a vector of n variables

Goal: Find a solution x that maximizes cTx subject to the linear constraints Ax ≤ b

5 / 39



Example and Terminology

Maximize 2x2 − x1 subject to:

x1 + x2 ≤ 3
2x1 − x2 ≤ −5

Here:

x =

[
x1
x2

]
A =

[
1 1
2 −1

]
b =

[
3
−5

]
c =

[
−1
2

]

Find x that maximizes cTx, subject to Ax ≤ b

6 / 39



Example and Terminology

Maximize 2x2 − x1 subject to:

x1 + x2 ≤ 3
2x1 − x2 ≤ −5

An assignment of x is a feasible solution if it satisfies Ax ≤ b
Otherwise, it is an infeasible solution

Is ⟨0, 0⟩ a feasible solution? ✗

Is ⟨−2, 1⟩ a feasible solution? ✓

For a given assignment of x, the value of cTx is the objective value, or cost, of x

What is the objective value of ⟨−2, 1⟩? 4

7 / 39



Example and Terminology

Maximize 2x2 − x1 subject to:

x1 + x2 ≤ 3
2x1 − x2 ≤ −5

An assignment of x is a feasible solution if it satisfies Ax ≤ b
Otherwise, it is an infeasible solution

Is ⟨0, 0⟩ a feasible solution? ✗

Is ⟨−2, 1⟩ a feasible solution? ✓

For a given assignment of x, the value of cTx is the objective value, or cost, of x

What is the objective value of ⟨−2, 1⟩? 4

7 / 39



Example and Terminology

Maximize 2x2 − x1 subject to:

x1 + x2 ≤ 3
2x1 − x2 ≤ −5

An assignment of x is a feasible solution if it satisfies Ax ≤ b
Otherwise, it is an infeasible solution

Is ⟨0, 0⟩ a feasible solution? ✗

Is ⟨−2, 1⟩ a feasible solution? ✓

For a given assignment of x, the value of cTx is the objective value, or cost, of x

What is the objective value of ⟨−2, 1⟩? 4

7 / 39



Example and Terminology

Maximize 2x2 − x1 subject to:

x1 + x2 ≤ 3
2x1 − x2 ≤ −5

An assignment of x is a feasible solution if it satisfies Ax ≤ b
Otherwise, it is an infeasible solution

Is ⟨0, 0⟩ a feasible solution? ✗

Is ⟨−2, 1⟩ a feasible solution? ✓

For a given assignment of x, the value of cTx is the objective value, or cost, of x

What is the objective value of ⟨−2, 1⟩? 4

7 / 39



Example and Terminology

Maximize 2x2 − x1 subject to:

x1 + x2 ≤ 3
2x1 − x2 ≤ −5

An assignment of x is a feasible solution if it satisfies Ax ≤ b
Otherwise, it is an infeasible solution

Is ⟨0, 0⟩ a feasible solution? ✗

Is ⟨−2, 1⟩ a feasible solution? ✓

For a given assignment of x, the value of cTx is the objective value, or cost, of x

What is the objective value of ⟨−2, 1⟩? 4

7 / 39



Example and Terminology

Maximize 2x2 − x1 subject to:

x1 + x2 ≤ 3
2x1 − x2 ≤ −5

An assignment of x is a feasible solution if it satisfies Ax ≤ b
Otherwise, it is an infeasible solution

Is ⟨0, 0⟩ a feasible solution? ✗

Is ⟨−2, 1⟩ a feasible solution? ✓

For a given assignment of x, the value of cTx is the objective value, or cost, of x

What is the objective value of ⟨−2, 1⟩? 4

7 / 39



Example and Terminology

Maximize 2x2 − x1 subject to:

x1 + x2 ≤ 3
2x1 − x2 ≤ −5

An assignment of x is a feasible solution if it satisfies Ax ≤ b
Otherwise, it is an infeasible solution

Is ⟨0, 0⟩ a feasible solution? ✗

Is ⟨−2, 1⟩ a feasible solution? ✓

For a given assignment of x, the value of cTx is the objective value, or cost, of x

What is the objective value of ⟨−2, 1⟩? 4

7 / 39



Example and Terminology

Maximize 2x2 − x1 subject to:

x1 + x2 ≤ 3
2x1 − x2 ≤ −5

An assignment of x is a feasible solution if it satisfies Ax ≤ b
Otherwise, it is an infeasible solution

Is ⟨0, 0⟩ a feasible solution? ✗

Is ⟨−2, 1⟩ a feasible solution? ✓

For a given assignment of x, the value of cTx is the objective value, or cost, of x

What is the objective value of ⟨−2, 1⟩? 4

7 / 39



Example and Terminology

An optimal solution is feasible solution with a maximal objective value, over all
feasible solutions

If a linear program has no feasible solutions, the linear program is infeasible

The linear program is unbounded if the objective value of the optimal solution is ∞

8 / 39



Example and Terminology

An optimal solution is feasible solution with a maximal objective value, over all
feasible solutions

If a linear program has no feasible solutions, the linear program is infeasible

The linear program is unbounded if the objective value of the optimal solution is ∞

8 / 39



Example and Terminology

An optimal solution is feasible solution with a maximal objective value, over all
feasible solutions

If a linear program has no feasible solutions, the linear program is infeasible

The linear program is unbounded if the objective value of the optimal solution is ∞

8 / 39



Geometric Interpretation

A polytope the generalization of polyhedron from 3-dimensional space to higher
dimensions

A polytope P is convex if for all v1, v2 ∈ Rn ∩ P,
λv1 + (1 − λ)v2 ∈ P for all λ ∈ [0, 1]

In other words, every point on the line segment
connecting two points in P is also in P

Note: For an m × n constraint matrix A, the set of points P = { x | Ax ≤ b } form a
convex polytope in n-dimensional space

LP goals: find a point in the polytope that maximizes cTx for a given c

9 / 39



Geometric Interpretation

A polytope the generalization of polyhedron from 3-dimensional space to higher
dimensions

A polytope P is convex if for all v1, v2 ∈ Rn ∩ P,
λv1 + (1 − λ)v2 ∈ P for all λ ∈ [0, 1]

In other words, every point on the line segment
connecting two points in P is also in P

Note: For an m × n constraint matrix A, the set of points P = { x | Ax ≤ b } form a
convex polytope in n-dimensional space

LP goals: find a point in the polytope that maximizes cTx for a given c

9 / 39



Geometric Interpretation

The LP is infeasible iff the polytope is empty

The LP is unbounded iff the polytope is open in the direction of the objective function

The optimal solution for a bounded LP must lie on a vertex of the polytope

10 / 39



Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear TRA-literals

11 / 39



Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear TRA-literals

Step 1: convert equalities to inequalities

11 / 39



Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear TRA-literals

Step 1: convert equalities to inequalities

A linear TRA-equality can be written to have the form aTx = b

11 / 39



Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear TRA-literals

Step 1: convert equalities to inequalities

A linear TRA-equality can be written to have the form aTx = b

We rewrite this further as aTx ≥ b and aTx ≤ b

And finally to −aTx ≤ −b, aTx ≤ b

11 / 39



Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear TRA-literals

Step 2: handle inequalities

11 / 39



Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear TRA-literals

Step 2: handle inequalities

A TRA-literal of the form aTx ≤ b is already in the desired form

11 / 39



Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear TRA-literals

Step 2: handle inequalities

A TRA-literal of the form aTx ≤ b is already in the desired form

A TRA-literal of the form ¬(aTx ≤ b) is transformed as follows

¬(aTx ≤ b) −→ aTx > b −→ −aTx < −b −→ −aTx + y ≤ −b, y > 0

where y is a fresh variable used for all negated inequalities

11 / 39



Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear TRA-literals

Step 2: handle inequalities

A TRA-literal of the form aTx ≤ b is already in the desired form

A TRA-literal of the form ¬(aTx ≤ b) is transformed as follows

¬(aTx ≤ b) −→ aTx > b −→ −aTx < −b −→ −aTx + y ≤ −b, y > 0

where y is a fresh variable used for all negated inequalities

Example: ¬(2x1 − x2 ≤ 3) rewrites to −2x1 + x2 + y ≤ −3, y > 0

11 / 39



Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear TRA-literals

Step 2: handle inequalities

A TRA-literal of the form aTx ≤ b is already in the desired form

A TRA-literal of the form ¬(aTx ≤ b) is transformed as follows

¬(aTx ≤ b) −→ aTx > b −→ −aTx < −b −→ −aTx + y ≤ −b, y > 0

where y is a fresh variable used for all negated inequalities

If there are no negated inequalities, add the inequality y ≤ 1 where y is a fresh var

11 / 39



Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear TRA-literals

Step 2: handle inequalities

A TRA-literal of the form aTx ≤ b is already in the desired form

A TRA-literal of the form ¬(aTx ≤ b) is transformed as follows

¬(aTx ≤ b) −→ aTx > b −→ −aTx < −b −→ −aTx + y ≤ −b, y > 0

where y is a fresh variable used for all negated inequalities

If there are no negated inequalities, add the inequality y ≤ 1 where y is a fresh var

In either case, we have the set of the form Ax ≤ b ∪ { y > 0 }

11 / 39



Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear TRA-literals

Step 3: check the satisfiability of Ax ≤ b ∪ { y > 0 }

11 / 39



Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear TRA-literals

Step 3: check the satisfiability of Ax ≤ b ∪ { y > 0 }
Encode that as the LP: maximize y subject to Ax ≤ b

11 / 39



Satisfiability as Linear Programming

Our goal: use LP to check the satisfiability of sets of linear TRA-literals

Step 3: check the satisfiability of Ax ≤ b ∪ { y > 0 }
Encode that as the LP: maximize y subject to Ax ≤ b

The final system is satisfiable iff the optimal value for y is positive

11 / 39



Methods for solving LP problems

• Simplex (Dantzig, 1949) Exponential time (probably)

• Ellipsoid (Khachian, 1979) Polynomial time

• Interior-point (Karmarkar, 1984) Polynomial time

Although the Simplex method is the oldest and the least efficient in theory
it can be implemented to be quite efficient in practice

It remains the most popular and we focus on it next

12 / 39



Methods for solving LP problems

• Simplex (Dantzig, 1949) Exponential time (probably)

• Ellipsoid (Khachian, 1979) Polynomial time

• Interior-point (Karmarkar, 1984) Polynomial time

Although the Simplex method is the oldest and the least efficient in theory
it can be implemented to be quite efficient in practice

It remains the most popular and we focus on it next

12 / 39



Methods for solving LP problems

• Simplex (Dantzig, 1949) Exponential time (probably)

• Ellipsoid (Khachian, 1979) Polynomial time

• Interior-point (Karmarkar, 1984) Polynomial time

Although the Simplex method is the oldest and the least efficient in theory
it can be implemented to be quite efficient in practice

It remains the most popular and we focus on it next

12 / 39



Standard Form
The general form of LP is to maximize objective function subject to a system of
inequalities

However, the Simplex method is easier to present
if we make the additional assumption that all variables are non-negative:

maximize
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n

We call this the standard form

This causes no loss of generality since any LP can be transformed to standard form
13 / 39



Standard Form
The general form of LP is to maximize objective function subject to a system of
inequalities

However, the Simplex method is easier to present
if we make the additional assumption that all variables are non-negative:

maximize
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n

We call this the standard form

This causes no loss of generality since any LP can be transformed to standard form
13 / 39



Standard Form
The general form of LP is to maximize objective function subject to a system of
inequalities

However, the Simplex method is easier to present
if we make the additional assumption that all variables are non-negative:

maximize
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n

We call this the standard form

This causes no loss of generality since any LP can be transformed to standard form
13 / 39



Standard Form
The general form of LP is to maximize objective function subject to a system of
inequalities

However, the Simplex method is easier to present
if we make the additional assumption that all variables are non-negative:

maximize
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n

We call this the standard form

This causes no loss of generality since any LP can be transformed to standard form
13 / 39



Standard Form
The general form of LP is to maximize objective function subject to a system of
inequalities

However, the Simplex method is easier to present
if we make the additional assumption that all variables are non-negative:

maximize
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n

We call this the standard form

This causes no loss of generality since any LP can be transformed to standard form
13 / 39



Standard Form

maximize
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n

Running example:
max 5x1 + 4x2 + 3x3

s.t.


2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8
x1, x2, x3 ≥ 0

14 / 39



Slack Variables

Observe the first inequation

2x1 + 3x2 + x3 ≤ 5

Define a new variable to represent the slack:

x4 = 5 − 2x1 − 3x2 − x3, x4 ≥ 0

Do this to every each constraint so everything
becomes equalities

max 5x1 + 4x2 + 3x3

s.t.


2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8
x1, x2, x3 ≥ 0

Define a new variable to represent the objective value: z = 5x1 + 4x2 + 3x3

15 / 39



Slack Variables

Observe the first inequation

2x1 + 3x2 + x3 ≤ 5

Define a new variable to represent the slack:

x4 = 5 − 2x1 − 3x2 − x3, x4 ≥ 0

Do this to every each constraint so everything
becomes equalities

max 5x1 + 4x2 + 3x3

s.t.


2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8
x1, x2, x3 ≥ 0

Define a new variable to represent the objective value: z = 5x1 + 4x2 + 3x3

15 / 39



Slack Variables

max 5x1 + 4x2 + 3x3

s.t.


2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8
x1, x2, x3 ≥ 0

−→

max z

s.t.



x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3

x1, x2, x3, x4, x5, x6 ≥ 0

New variables are called slack variables

Optimal solution remains optimal for the new problem

16 / 39



Slack Variables

max 5x1 + 4x2 + 3x3

s.t.


2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8
x1, x2, x3 ≥ 0

−→

max z

s.t.



x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 0 + 5x1 + 4x2 + 3x3

x1, x2, x3, x4, x5, x6 ≥ 0

New variables are called slack variables

Optimal solution remains optimal for the new problem

16 / 39



The Simplex Strategy
• Start with a feasible solution

• For our example, assign 0 to all original variables
▶ x1 7→ 0, x2 7→ 0, x3 7→ 0

• Assign the introduced vars their computed value
▶ x4 7→ 5, x5 7→ 11, x6 7→ 8, z 7→ 0

• Iteratively improve the objective value
• Go from x to x′ only if z(x) ≤ z(x′)


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

What can we improve here?

One option: make x1 larger, leave x2, x3 unchanged

• x1 = 1 ⇒ x4 = 3, x5 = 7, x6 = 1, z = 5 ✓

• x1 = 2 ⇒ x4 = 1, x5 = 3, x6 = 2, z = 10 ✓

• x1 = 3 ⇒ x4 = −1, . . . ✗ no longer feasible!

17 / 39



The Simplex Strategy
• Start with a feasible solution

• For our example, assign 0 to all original variables
▶ x1 7→ 0, x2 7→ 0, x3 7→ 0

• Assign the introduced vars their computed value
▶ x4 7→ 5, x5 7→ 11, x6 7→ 8, z 7→ 0

• Iteratively improve the objective value
• Go from x to x′ only if z(x) ≤ z(x′)


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

What can we improve here?

One option: make x1 larger, leave x2, x3 unchanged

• x1 = 1 ⇒ x4 = 3, x5 = 7, x6 = 1, z = 5 ✓

• x1 = 2 ⇒ x4 = 1, x5 = 3, x6 = 2, z = 10 ✓

• x1 = 3 ⇒ x4 = −1, . . . ✗ no longer feasible!

17 / 39



The Simplex Strategy
• Start with a feasible solution

• For our example, assign 0 to all original variables
▶ x1 7→ 0, x2 7→ 0, x3 7→ 0

• Assign the introduced vars their computed value
▶ x4 7→ 5, x5 7→ 11, x6 7→ 8, z 7→ 0

• Iteratively improve the objective value
• Go from x to x′ only if z(x) ≤ z(x′)


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

What can we improve here?

One option: make x1 larger, leave x2, x3 unchanged

• x1 = 1 ⇒ x4 = 3, x5 = 7, x6 = 1, z = 5 ✓

• x1 = 2 ⇒ x4 = 1, x5 = 3, x6 = 2, z = 10 ✓

• x1 = 3 ⇒ x4 = −1, . . . ✗ no longer feasible!

17 / 39



The Simplex Strategy
• Start with a feasible solution

• For our example, assign 0 to all original variables
▶ x1 7→ 0, x2 7→ 0, x3 7→ 0

• Assign the introduced vars their computed value
▶ x4 7→ 5, x5 7→ 11, x6 7→ 8, z 7→ 0

• Iteratively improve the objective value
• Go from x to x′ only if z(x) ≤ z(x′)


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

What can we improve here?

One option: make x1 larger, leave x2, x3 unchanged

• x1 = 1 ⇒ x4 = 3, x5 = 7, x6 = 1, z = 5 ✓

• x1 = 2 ⇒ x4 = 1, x5 = 3, x6 = 2, z = 10 ✓

• x1 = 3 ⇒ x4 = −1, . . . ✗ no longer feasible!

17 / 39



The Simplex Strategy
• Start with a feasible solution

• For our example, assign 0 to all original variables
▶ x1 7→ 0, x2 7→ 0, x3 7→ 0

• Assign the introduced vars their computed value
▶ x4 7→ 5, x5 7→ 11, x6 7→ 8, z 7→ 0

• Iteratively improve the objective value
• Go from x to x′ only if z(x) ≤ z(x′)


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

What can we improve here?

One option: make x1 larger, leave x2, x3 unchanged

• x1 = 1 ⇒ x4 = 3, x5 = 7, x6 = 1, z = 5 ✓

• x1 = 2 ⇒ x4 = 1, x5 = 3, x6 = 2, z = 10 ✓

• x1 = 3 ⇒ x4 = −1, . . . ✗ no longer feasible!

17 / 39



The Simplex Strategy
• Start with a feasible solution

• For our example, assign 0 to all original variables
▶ x1 7→ 0, x2 7→ 0, x3 7→ 0

• Assign the introduced vars their computed value
▶ x4 7→ 5, x5 7→ 11, x6 7→ 8, z 7→ 0

• Iteratively improve the objective value
• Go from x to x′ only if z(x) ≤ z(x′)


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

What can we improve here?

One option: make x1 larger, leave x2, x3 unchanged

• x1 = 1 ⇒ x4 = 3, x5 = 7, x6 = 1, z = 5 ✓

• x1 = 2 ⇒ x4 = 1, x5 = 3, x6 = 2, z = 10 ✓

• x1 = 3 ⇒ x4 = −1, . . . ✗ no longer feasible!

17 / 39



The Simplex Strategy
• Start with a feasible solution

• For our example, assign 0 to all original variables
▶ x1 7→ 0, x2 7→ 0, x3 7→ 0

• Assign the introduced vars their computed value
▶ x4 7→ 5, x5 7→ 11, x6 7→ 8, z 7→ 0

• Iteratively improve the objective value
• Go from x to x′ only if z(x) ≤ z(x′)


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

What can we improve here?

One option: make x1 larger, leave x2, x3 unchanged

• x1 = 1 ⇒ x4 = 3, x5 = 7, x6 = 1, z = 5 ✓

• x1 = 2 ⇒ x4 = 1, x5 = 3, x6 = 2, z = 10 ✓

• x1 = 3 ⇒ x4 = −1, . . . ✗ no longer feasible!

17 / 39



The Simplex Strategy
Moral of the story:
• Can’t increase x1 too much
• Increase it as much as possible, without compromising feasibility

x1 7→ 0, x2 7→ 0, x3 7→ 0
x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

−→ x1 ≤ 5
2 , x1 ≤ 11

4 , x1 ≤ 8
3

Select the tightest bound, x1 ≤ 5
2

• New assignment: x1 7→ 5
2 , x2 7→ x3 7→ x4 7→ 0, x5 7→ 1, x6 7→ 1

2 , z 7→ 25
2

• This indeed improves the value of z
18 / 39



The Simplex Strategy
Moral of the story:
• Can’t increase x1 too much
• Increase it as much as possible, without compromising feasibility

x1 7→ 0, x2 7→ 0, x3 7→ 0
x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

−→ x1 ≤ 5
2 , x1 ≤ 11

4 , x1 ≤ 8
3

Select the tightest bound, x1 ≤ 5
2

• New assignment: x1 7→ 5
2 , x2 7→ x3 7→ x4 7→ 0, x5 7→ 1, x6 7→ 1

2 , z 7→ 25
2

• This indeed improves the value of z
18 / 39



The Simplex Strategy
Moral of the story:
• Can’t increase x1 too much
• Increase it as much as possible, without compromising feasibility

x1 7→ 0, x2 7→ 0, x3 7→ 0
x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

−→ x1 ≤ 5
2 , x1 ≤ 11

4 , x1 ≤ 8
3

Select the tightest bound, x1 ≤ 5
2

• New assignment: x1 7→ 5
2 , x2 7→ x3 7→ x4 7→ 0, x5 7→ 1, x6 7→ 1

2 , z 7→ 25
2

• This indeed improves the value of z
18 / 39



The Simplex Strategy
Moral of the story:
• Can’t increase x1 too much
• Increase it as much as possible, without compromising feasibility

x1 7→ 0, x2 7→ 0, x3 7→ 0
x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

−→ x1 ≤ 5
2 , x1 ≤ 11

4 , x1 ≤ 8
3

Select the tightest bound, x1 ≤ 5
2

• New assignment: x1 7→ 5
2 , x2 7→ x3 7→ x4 7→ 0, x5 7→ 1, x6 7→ 1

2 , z 7→ 25
2

• This indeed improves the value of z
18 / 39



The Simplex Strategy

Currently,
x1 7→ 5

2 , x2 7→ x3 7→ x4 7→ 0, x5 7→ 1, x6 7→ 1
2 , z 7→ 25

2

How do we continue?

For the first iteration we had:
• A feasible solution ✓

• An equation system, where
• variables with positive value are expressed

in terms of variables with 0 value


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

Does the current equation system satisfy this property? No

Need to update the equations

19 / 39



The Simplex Strategy

Currently,
x1 7→ 5

2 , x2 7→ x3 7→ x4 7→ 0, x5 7→ 1, x6 7→ 1
2 , z 7→ 25

2

How do we continue?

For the first iteration we had:
• A feasible solution ✓

• An equation system, where
• variables with positive value are expressed

in terms of variables with 0 value


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

Does the current equation system satisfy this property? No

Need to update the equations

19 / 39



The Simplex Strategy

Currently,
x1 7→ 5

2 , x2 7→ x3 7→ x4 7→ 0, x5 7→ 1, x6 7→ 1
2 , z 7→ 25

2

How do we continue?

For the first iteration we had:
• A feasible solution ✓

• An equation system, where
• variables with positive value are expressed

in terms of variables with 0 value


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

Does the current equation system satisfy this property? No

Need to update the equations

19 / 39



The Simplex Strategy

Currently,
x1 7→ 5

2 , x2 7→ x3 7→ x4 7→ 0, x5 7→ 1, x6 7→ 1
2 , z 7→ 25

2

How do we continue?

For the first iteration we had:
• A feasible solution ✓

• An equation system, where
• variables with positive value are expressed

in terms of variables with 0 value


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

Does the current equation system satisfy this property? No

Need to update the equations

19 / 39



The Simplex Strategy

Currently,
x1 7→ 5

2 , x2 7→ x3 7→ x4 7→ 0, x5 7→ 1, x6 7→ 1
2 , z 7→ 25

2

How do we continue?

For the first iteration we had:
• A feasible solution ✓

• An equation system, where
• variables with positive value are expressed

in terms of variables with 0 value


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

Does the current equation system satisfy this property? No

Need to update the equations

19 / 39



The Simplex Strategy

Currently,
x1 7→ 5

2 , x2 7→ x3 7→ x4 7→ 0, x5 7→ 1, x6 7→ 1
2 , z 7→ 25

2

How do we continue?

For the first iteration we had:
• A feasible solution ✓

• An equation system, where
• variables with positive value are expressed

in terms of variables with 0 value


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

Does the current equation system satisfy this property? No

Need to update the equations

19 / 39



The Simplex Strategy

What should we change?
Initially: x1 was 0, x4 was positive
Now: x1 is positive, x4 is 0

x1 7→ 5
2 , x2 7→ 0, x3 7→ 0, x4 7→ 0

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

Isolate x1, eliminate from right-hand-side

x4 = 5 − 2x1 − 3x2 − x3 −→ x1 =
5
2 −

3
2 x2 − 1

2 x3 − 1
2 x4

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

−→


x1 =

5
2 −

3
2 x2 − 1

2 x3 − 1
2 x4

x5 = 1 + 5x2 + 2x4

x6 =
1
2 +

1
2 x2 − 1

2 x3 +
3
2 x4

z = 25
2 − 7

2 x2 +
1
2 x3 − 5

2 x4

20 / 39



The Simplex Strategy

What should we change?
Initially: x1 was 0, x4 was positive
Now: x1 is positive, x4 is 0

x1 7→ 5
2 , x2 7→ 0, x3 7→ 0, x4 7→ 0

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

Isolate x1, eliminate from right-hand-side

x4 = 5 − 2x1 − 3x2 − x3 −→ x1 =
5
2 −

3
2 x2 − 1

2 x3 − 1
2 x4

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

−→


x1 =

5
2 −

3
2 x2 − 1

2 x3 − 1
2 x4

x5 = 1 + 5x2 + 2x4

x6 =
1
2 +

1
2 x2 − 1

2 x3 +
3
2 x4

z = 25
2 − 7

2 x2 +
1
2 x3 − 5

2 x4

20 / 39



The Simplex Strategy

What should we change?
Initially: x1 was 0, x4 was positive
Now: x1 is positive, x4 is 0

x1 7→ 5
2 , x2 7→ 0, x3 7→ 0, x4 7→ 0

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

Isolate x1, eliminate from right-hand-side

x4 = 5 − 2x1 − 3x2 − x3 −→ x1 =
5
2 −

3
2 x2 − 1

2 x3 − 1
2 x4

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

−→


x1 =

5
2 −

3
2 x2 − 1

2 x3 − 1
2 x4

x5 = 1 + 5x2 + 2x4

x6 =
1
2 +

1
2 x2 − 1

2 x3 +
3
2 x4

z = 25
2 − 7

2 x2 +
1
2 x3 − 5

2 x4

20 / 39



The Simplex Strategy

What should we change?
Initially: x1 was 0, x4 was positive
Now: x1 is positive, x4 is 0

x1 7→ 5
2 , x2 7→ 0, x3 7→ 0, x4 7→ 0

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

Isolate x1, eliminate from right-hand-side

x4 = 5 − 2x1 − 3x2 − x3 −→ x1 =
5
2 −

3
2 x2 − 1

2 x3 − 1
2 x4

x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

−→


x1 =

5
2 −

3
2 x2 − 1

2 x3 − 1
2 x4

x5 = 1 + 5x2 + 2x4

x6 =
1
2 +

1
2 x2 − 1

2 x3 +
3
2 x4

z = 25
2 − 7

2 x2 +
1
2 x3 − 5

2 x4

20 / 39



The Simplex Strategy

How can we improve z further?
Option 1: decrease x2 or x4

but we can’t since x2, x4 ≥ 0

Option 2: increase x3
By how much?

x1 7→ 5
2 , x2 7→ 0, x3 7→ 0, x4 7→ 0

x1 =
5
2 −

3
2 x2 − 1

2 x3 − 1
2 x4

x5 = 1 + 5x2 + 2x4

x6 =
1
2 +

1
2 x2 − 1

2 x3 +
3
2 x4

z = 25
2 − 7

2 x2 +
1
2 x3 − 5

2 x4

x3’s bounds: x3 ≤ 5, x3 ≤ ∞, x3 ≤ 1

So we increase x3 to 1

• New assignment: x1 7→ 2, x2 7→ 0, x3 7→ 1, x4 7→ 0, x5 7→ 0, x6 7→ 0

• This gives z = 13, which is again an improvement

21 / 39



The Simplex Strategy

How can we improve z further?
Option 1: decrease x2 or x4

but we can’t since x2, x4 ≥ 0

Option 2: increase x3
By how much?

x1 7→ 5
2 , x2 7→ 0, x3 7→ 0, x4 7→ 0

x1 =
5
2 −

3
2 x2 − 1

2 x3 − 1
2 x4

x5 = 1 + 5x2 + 2x4

x6 =
1
2 +

1
2 x2 − 1

2 x3 +
3
2 x4

z = 25
2 − 7

2 x2 +
1
2 x3 − 5

2 x4

x3’s bounds: x3 ≤ 5, x3 ≤ ∞, x3 ≤ 1

So we increase x3 to 1

• New assignment: x1 7→ 2, x2 7→ 0, x3 7→ 1, x4 7→ 0, x5 7→ 0, x6 7→ 0

• This gives z = 13, which is again an improvement

21 / 39



The Simplex Strategy

How can we improve z further?
Option 1: decrease x2 or x4

but we can’t since x2, x4 ≥ 0

Option 2: increase x3
By how much?

x1 7→ 5
2 , x2 7→ 0, x3 7→ 0, x4 7→ 0

x1 =
5
2 −

3
2 x2 − 1

2 x3 − 1
2 x4

x5 = 1 + 5x2 + 2x4

x6 =
1
2 +

1
2 x2 − 1

2 x3 +
3
2 x4

z = 25
2 − 7

2 x2 +
1
2 x3 − 5

2 x4

x3’s bounds: x3 ≤ 5, x3 ≤ ∞, x3 ≤ 1

So we increase x3 to 1

• New assignment: x1 7→ 2, x2 7→ 0, x3 7→ 1, x4 7→ 0, x5 7→ 0, x6 7→ 0

• This gives z = 13, which is again an improvement

21 / 39



The Simplex Strategy

How can we improve z further?
Option 1: decrease x2 or x4

but we can’t since x2, x4 ≥ 0

Option 2: increase x3
By how much?

x1 7→ 5
2 , x2 7→ 0, x3 7→ 0, x4 7→ 0

x1 =
5
2 −

3
2 x2 − 1

2 x3 − 1
2 x4

x5 = 1 + 5x2 + 2x4

x6 =
1
2 +

1
2 x2 − 1

2 x3 +
3
2 x4

z = 25
2 − 7

2 x2 +
1
2 x3 − 5

2 x4

x3’s bounds: x3 ≤ 5, x3 ≤ ∞, x3 ≤ 1

So we increase x3 to 1

• New assignment: x1 7→ 2, x2 7→ 0, x3 7→ 1, x4 7→ 0, x5 7→ 0, x6 7→ 0

• This gives z = 13, which is again an improvement

21 / 39



The Simplex Strategy

How can we improve z further?
Option 1: decrease x2 or x4

but we can’t since x2, x4 ≥ 0

Option 2: increase x3
By how much?

x1 7→ 5
2 , x2 7→ 0, x3 7→ 0, x4 7→ 0

x1 =
5
2 −

3
2 x2 − 1

2 x3 − 1
2 x4

x5 = 1 + 5x2 + 2x4

x6 =
1
2 +

1
2 x2 − 1

2 x3 +
3
2 x4

z = 25
2 − 7

2 x2 +
1
2 x3 − 5

2 x4

x3’s bounds: x3 ≤ 5, x3 ≤ ∞, x3 ≤ 1

So we increase x3 to 1

• New assignment: x1 7→ 2, x2 7→ 0, x3 7→ 1, x4 7→ 0, x5 7→ 0, x6 7→ 0

• This gives z = 13, which is again an improvement

21 / 39



The Simplex Strategy

How can we improve z further?
Option 1: decrease x2 or x4

but we can’t since x2, x4 ≥ 0

Option 2: increase x3
By how much?

x1 7→ 5
2 , x2 7→ 0, x3 7→ 0, x4 7→ 0

x1 =
5
2 −

3
2 x2 − 1

2 x3 − 1
2 x4

x5 = 1 + 5x2 + 2x4

x6 =
1
2 +

1
2 x2 − 1

2 x3 +
3
2 x4

z = 25
2 − 7

2 x2 +
1
2 x3 − 5

2 x4

x3’s bounds: x3 ≤ 5, x3 ≤ ∞, x3 ≤ 1

So we increase x3 to 1

• New assignment: x1 7→ 2, x2 7→ 0, x3 7→ 1, x4 7→ 0, x5 7→ 0, x6 7→ 0

• This gives z = 13, which is again an improvement

21 / 39



The Simplex Strategy

Analogously to before, we switch x6 and x3, and eliminate x3 from the right-hand sides


x1 =

5
2 −

3
2 x2 − 1

2 x3 − 1
2 x4

x5 = 1 + 5x2 + 2x4

x6 =
1
2 +

1
2 x2 − 1

2 x3 +
3
2 x4

z = 25
2 − 7

2 x2 +
1
2 x3 − 5

2 x4

−→


x1 = 2 − 2x2 − 2x4 + x6

x5 = 1 + 5x2 + 2x4

x3 = 1 + x2 + 3x4 − 2x6

z = 13 − 3x2 − x4 − x6

22 / 39



The Simplex Strategy

Can we improve z again?
• No, because x2, x4, x6 ≥ 0 and

• all appear with negative signs in the
objective function

x1 7→ 2, x2 7→ 0, x3 7→ 1
x4 7→ 0, x6 7→ 0

x1 = 2 − 2x2 − 2x4 + x6

x5 = 1 + 5x2 + 2x4

x3 = 1 + x2 + 3x4 − 2x6

z = 13 − 3x2 − x4 − x6

So we are done, and the optimal value of z is 13

The optimal solution is then x1 7→ 2, x2 7→ 0, x3 7→ 1

23 / 39



The Simplex Strategy

Can we improve z again?
• No, because x2, x4, x6 ≥ 0 and

• all appear with negative signs in the
objective function

x1 7→ 2, x2 7→ 0, x3 7→ 1
x4 7→ 0, x6 7→ 0

x1 = 2 − 2x2 − 2x4 + x6

x5 = 1 + 5x2 + 2x4

x3 = 1 + x2 + 3x4 − 2x6

z = 13 − 3x2 − x4 − x6

So we are done, and the optimal value of z is 13

The optimal solution is then x1 7→ 2, x2 7→ 0, x3 7→ 1

23 / 39



The Simplex Strategy

Can we improve z again?
• No, because x2, x4, x6 ≥ 0 and

• all appear with negative signs in the
objective function

x1 7→ 2, x2 7→ 0, x3 7→ 1
x4 7→ 0, x6 7→ 0

x1 = 2 − 2x2 − 2x4 + x6

x5 = 1 + 5x2 + 2x4

x3 = 1 + x2 + 3x4 − 2x6

z = 13 − 3x2 − x4 − x6

So we are done, and the optimal value of z is 13

The optimal solution is then x1 7→ 2, x2 7→ 0, x3 7→ 1

23 / 39



The Simplex Strategy

Can we improve z again?
• No, because x2, x4, x6 ≥ 0 and

• all appear with negative signs in the
objective function

x1 7→ 2, x2 7→ 0, x3 7→ 1
x4 7→ 0, x6 7→ 0

x1 = 2 − 2x2 − 2x4 + x6

x5 = 1 + 5x2 + 2x4

x3 = 1 + x2 + 3x4 − 2x6

z = 13 − 3x2 − x4 − x6

So we are done, and the optimal value of z is 13

The optimal solution is then x1 7→ 2, x2 7→ 0, x3 7→ 1

23 / 39



The Simplex Algorithm

maximize
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n

1. Introduce slack variables xn+1, . . . , xn+m

2. Set xn+i = bi −
∑n

j=1 aijxj for i = 1, . . . ,m

3. Start with initial, feasible solution (x1 7→ 0, . . . , xn 7→ 0 in our example)

4. If some addends in the current objective function have positive coefficients, update the
feasible solution to improve the objective value; otherwise, stop

5. Update the equations to maintain the invariant that all right-hand side vars have value 0

6. Go to step 4
24 / 39



Updating the Equations: Pivoting

As we progress towards the optimal solution,
equations are updated
This computational process of constructing the
new equation system is called pivoting


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

Invariants:

• Number of equations (m) never changes
• Variables are either on the left-hand side or the right-hand side, never both

• Left-hand side variables are called basic

• Right-hand side variables are called non-basic

• Non-basic variables always pressed against their bounds (always 0)

• Basic variable assignment determined by non-basic assignment and equations
25 / 39



Updating the Equations: Pivoting

As we progress towards the optimal solution,
equations are updated
This computational process of constructing the
new equation system is called pivoting


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

Invariants:

• Number of equations (m) never changes
• Variables are either on the left-hand side or the right-hand side, never both

• Left-hand side variables are called basic

• Right-hand side variables are called non-basic

• Non-basic variables always pressed against their bounds (always 0)

• Basic variable assignment determined by non-basic assignment and equations
25 / 39



Updating the Equations: Pivoting

As we progress towards the optimal solution,
equations are updated
This computational process of constructing the
new equation system is called pivoting


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

Invariants:

• Number of equations (m) never changes
• Variables are either on the left-hand side or the right-hand side, never both

• Left-hand side variables are called basic

• Right-hand side variables are called non-basic

• Non-basic variables always pressed against their bounds (always 0)

• Basic variable assignment determined by non-basic assignment and equations
25 / 39



Updating the Equations: Pivoting

The set of basic variables is the basis


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3In the pivoting step:

• A non-basic variable enters the basis (the entering variable)

• A basic variable leaves the basis (the leaving variable)

How is the entering variable chosen? To increase the value of z

One strategy (Dantzig’s rule) picks the variable with the largest coefficient

How is the leaving variable chosen? To maintain feasibility

Select the basic variable corresponding to the tightest upper-bound

26 / 39



Updating the Equations: Pivoting

The set of basic variables is the basis


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3In the pivoting step:

• A non-basic variable enters the basis (the entering variable)

• A basic variable leaves the basis (the leaving variable)

How is the entering variable chosen? To increase the value of z

One strategy (Dantzig’s rule) picks the variable with the largest coefficient

How is the leaving variable chosen? To maintain feasibility

Select the basic variable corresponding to the tightest upper-bound

26 / 39



Updating the Equations: Pivoting

The set of basic variables is the basis


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3In the pivoting step:

• A non-basic variable enters the basis (the entering variable)

• A basic variable leaves the basis (the leaving variable)

How is the entering variable chosen? To increase the value of z

One strategy (Dantzig’s rule) picks the variable with the largest coefficient

How is the leaving variable chosen? To maintain feasibility

Select the basic variable corresponding to the tightest upper-bound

26 / 39



Updating the Equations: Pivoting

The set of basic variables is the basis


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3In the pivoting step:

• A non-basic variable enters the basis (the entering variable)

• A basic variable leaves the basis (the leaving variable)

How is the entering variable chosen? To increase the value of z

One strategy (Dantzig’s rule) picks the variable with the largest coefficient

How is the leaving variable chosen? To maintain feasibility

Select the basic variable corresponding to the tightest upper-bound

26 / 39



Updating the Equations: Pivoting

The set of basic variables is the basis


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3In the pivoting step:

• A non-basic variable enters the basis (the entering variable)

• A basic variable leaves the basis (the leaving variable)

How is the entering variable chosen? To increase the value of z

One strategy (Dantzig’s rule) picks the variable with the largest coefficient

How is the leaving variable chosen? To maintain feasibility

Select the basic variable corresponding to the tightest upper-bound

26 / 39



Updating the Equations: Pivoting

The set of basic variables is the basis


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3In the pivoting step:

• A non-basic variable enters the basis (the entering variable)

• A basic variable leaves the basis (the leaving variable)

How is the entering variable chosen? To increase the value of z

One strategy (Dantzig’s rule) picks the variable with the largest coefficient

How is the leaving variable chosen? To maintain feasibility

Select the basic variable corresponding to the tightest upper-bound

26 / 39



Tableau and Implementation

We have presented the equation system as a dictionary

A more popular version uses a matrix, or a tableau:


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

−→

x1 x2 x3 x4 x5 x6 z b
2 3 1 1 0 0 0 5
4 1 2 1 1 0 0 11
3 4 2 1 0 1 0 8
5 4 3 0 0 0 0 0

−5 −4 −3 0 0 0 1 0

The pivoting process can be understood as a series of matrix operations

See [Guoqing Hu] for a description and example

27 / 39

https://optimization.cbe.cornell.edu/index.php?title=Simplex_algorithm


Tableau and Implementation

We have presented the equation system as a dictionary

A more popular version uses a matrix, or a tableau:


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

−→

x1 x2 x3 x4 x5 x6 z b
2 3 1 1 0 0 0 5
4 1 2 1 1 0 0 11
3 4 2 1 0 1 0 8
5 4 3 0 0 0 0 0

−5 −4 −3 0 0 0 1 0

The pivoting process can be understood as a series of matrix operations

See [Guoqing Hu] for a description and example

27 / 39

https://optimization.cbe.cornell.edu/index.php?title=Simplex_algorithm


Tableau and Implementation

We have presented the equation system as a dictionary

A more popular version uses a matrix, or a tableau:


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

−→

x1 x2 x3 x4 x5 x6 z b
2 3 1 1 0 0 0 5
4 1 2 1 1 0 0 11
3 4 2 1 0 1 0 8
5 4 3 0 0 0 0 0

−5 −4 −3 0 0 0 1 0

The pivoting process can be understood as a series of matrix operations

See [Guoqing Hu] for a description and example

27 / 39

https://optimization.cbe.cornell.edu/index.php?title=Simplex_algorithm


Tableau and Implementation

We have presented the equation system as a dictionary

A more popular version uses a matrix, or a tableau:


x4 = 5 − 2x1 − 3x2 − x3

x5 = 11 − 4x1 − x2 − 2x3

x6 = 8 − 3x1 − 4x2 − 2x3

z = 5x1 + 4x2 + 3x3

−→

x1 x2 x3 x4 x5 x6 z b
2 3 1 1 0 0 0 5
4 1 2 1 1 0 0 11
3 4 2 1 0 1 0 8
5 4 3 0 0 0 0 0

−5 −4 −3 0 0 0 1 0

The pivoting process can be understood as a series of matrix operations

See [Guoqing Hu] for a description and example

27 / 39

https://optimization.cbe.cornell.edu/index.php?title=Simplex_algorithm


Some Challenges

Possible problems of the procedure that we described so far:

Initialization: how to obtain an initial feasible solution?

Termination: can we generate an infinite sequence of dictionaries,
without reaching an optimal z?

28 / 39



Some Challenges

Possible problems of the procedure that we described so far:

Initialization: how to obtain an initial feasible solution?

Termination: can we generate an infinite sequence of dictionaries,
without reaching an optimal z?

28 / 39



Challenges: initialization

maximize
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n

Easy when all bi’s are non-negative (set all xj to 0)

What can we do for negative bi’s?

29 / 39



Challenges: initialization

maximize
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n

Easy when all bi’s are non-negative (set all xj to 0)

What can we do for negative bi’s?

29 / 39



Challenges: initialization

maximize
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n

Easy when all bi’s are non-negative (set all xj to 0)

What can we do for negative bi’s?

29 / 39



Challenges: initialization
Solution: switch to an auxiliary problem with a known feasible solution

maximize
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n

becomes
maximize − x0

s.t. − x0 +
n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 0, 1, . . . , n
30 / 39



Challenges: initialization
Solution: switch to an auxiliary problem with a known feasible solution

maximize
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n

becomes
maximize − x0

s.t. − x0 +
n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 0, 1, . . . , n
30 / 39



Challenges: initialization

maximize − x0

s.t. − x0 +
n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 0, 1, . . . , n

For the auxiliary problem, a feasible solution is easy to find:

set x1, . . . , xn to 0, and make x0 sufficiently large

Original problem is feasible iff the optimal solution for the auxiliary problem has x0 7→ 0

31 / 39



Challenges: initialization

maximize − x0

s.t. − x0 +
n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 0, 1, . . . , n

For the auxiliary problem, a feasible solution is easy to find:

set x1, . . . , xn to 0, and make x0 sufficiently large

Original problem is feasible iff the optimal solution for the auxiliary problem has x0 7→ 0

31 / 39



Challenges: initialization

maximize − x0

s.t. − x0 +
n∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 0, 1, . . . , n

For the auxiliary problem, a feasible solution is easy to find:

set x1, . . . , xn to 0, and make x0 sufficiently large

Original problem is feasible iff the optimal solution for the auxiliary problem has x0 7→ 0

31 / 39



Initialization: example

maximize x1 + 2x2

s.t.


2x1 − 3x2 ≤ −2
4x1 − x2 ≤ −4
x1, x2 ≥ 0

−→
maximize − x0

s.t.


2x1 − 3x2 − x0 ≤ −2
4x1 − x2 − x0 ≤ −4
x0, x1, x2 ≥ 0

The dictionary of the auxiliary problem:
x3 = −2 − 2x1 + 3x2 +x0
x4 = −4 − 4x1 + x2 +x0

z = −x0

Initial feasible solution: x0 7→ 4, x1 7→ 0, x2 7→ 0

Any issues? Variables on the right-hand side need to be 0

Solution: perform a pivot step to move x0 into the basis
x3 = 2 + 2x1 + 2x2 +x4
x0 = 4 + 4x1 − x2 +x4

z = −4 − 4x1 + x2 −x4
32 / 39



Initialization: example

maximize x1 + 2x2

s.t.


2x1 − 3x2 ≤ −2
4x1 − x2 ≤ −4
x1, x2 ≥ 0

−→
maximize − x0

s.t.


2x1 − 3x2 − x0 ≤ −2
4x1 − x2 − x0 ≤ −4
x0, x1, x2 ≥ 0

The dictionary of the auxiliary problem:
x3 = −2 − 2x1 + 3x2 +x0
x4 = −4 − 4x1 + x2 +x0

z = −x0

Initial feasible solution: x0 7→ 4, x1 7→ 0, x2 7→ 0

Any issues? Variables on the right-hand side need to be 0

Solution: perform a pivot step to move x0 into the basis
x3 = 2 + 2x1 + 2x2 +x4
x0 = 4 + 4x1 − x2 +x4

z = −4 − 4x1 + x2 −x4
32 / 39



Initialization: example

maximize x1 + 2x2

s.t.


2x1 − 3x2 ≤ −2
4x1 − x2 ≤ −4
x1, x2 ≥ 0

−→
maximize − x0

s.t.


2x1 − 3x2 − x0 ≤ −2
4x1 − x2 − x0 ≤ −4
x0, x1, x2 ≥ 0

The dictionary of the auxiliary problem:
x3 = −2 − 2x1 + 3x2 +x0
x4 = −4 − 4x1 + x2 +x0

z = −x0

Initial feasible solution: x0 7→ 4, x1 7→ 0, x2 7→ 0

Any issues? Variables on the right-hand side need to be 0

Solution: perform a pivot step to move x0 into the basis
x3 = 2 + 2x1 + 2x2 +x4
x0 = 4 + 4x1 − x2 +x4

z = −4 − 4x1 + x2 −x4
32 / 39



Initialization: example

maximize x1 + 2x2

s.t.


2x1 − 3x2 ≤ −2
4x1 − x2 ≤ −4
x1, x2 ≥ 0

−→
maximize − x0

s.t.


2x1 − 3x2 − x0 ≤ −2
4x1 − x2 − x0 ≤ −4
x0, x1, x2 ≥ 0

The dictionary of the auxiliary problem:
x3 = −2 − 2x1 + 3x2 +x0
x4 = −4 − 4x1 + x2 +x0

z = −x0

Initial feasible solution: x0 7→ 4, x1 7→ 0, x2 7→ 0

Any issues? Variables on the right-hand side need to be 0

Solution: perform a pivot step to move x0 into the basis
x3 = 2 + 2x1 + 2x2 +x4
x0 = 4 + 4x1 − x2 +x4

z = −4 − 4x1 + x2 −x4
32 / 39



Initialization: example

maximize x1 + 2x2

s.t.


2x1 − 3x2 ≤ −2
4x1 − x2 ≤ −4
x1, x2 ≥ 0

−→
maximize − x0

s.t.


2x1 − 3x2 − x0 ≤ −2
4x1 − x2 − x0 ≤ −4
x0, x1, x2 ≥ 0

The dictionary of the auxiliary problem:
x3 = −2 − 2x1 + 3x2 +x0
x4 = −4 − 4x1 + x2 +x0

z = −x0

Initial feasible solution: x0 7→ 4, x1 7→ 0, x2 7→ 0

Any issues? Variables on the right-hand side need to be 0

Solution: perform a pivot step to move x0 into the basis
x3 = 2 + 2x1 + 2x2 +x4
x0 = 4 + 4x1 − x2 +x4

z = −4 − 4x1 + x2 −x4
32 / 39



Initialization: example

maximize x1 + 2x2

s.t.


2x1 − 3x2 ≤ −2
4x1 − x2 ≤ −4
x1, x2 ≥ 0

−→
maximize − x0

s.t.


2x1 − 3x2 − x0 ≤ −2
4x1 − x2 − x0 ≤ −4
x0, x1, x2 ≥ 0

The dictionary of the auxiliary problem:
x3 = −2 − 2x1 + 3x2 +x0
x4 = −4 − 4x1 + x2 +x0

z = −x0

Initial feasible solution: x0 7→ 4, x1 7→ 0, x2 7→ 0

Any issues? Variables on the right-hand side need to be 0

Solution: perform a pivot step to move x0 into the basis
x3 = 2 + 2x1 + 2x2 +x4
x0 = 4 + 4x1 − x2 +x4

z = −4 − 4x1 + x2 −x4
32 / 39



Challenges: Termination

Recall the goal of every iteration is to increase the objective function z

In each pivoting step, we swap a non-basic variable with a basic variable:

• The non-basic (entering) variable has a positive coefficient in the objective
function

• If no such variable exists, the objective function is optimal and we can stop

• The leaving variable is the one imposing the tightest constraint

An iteration will never make z worse

So when might we not converge to the optimal z?

33 / 39



Challenges: Termination

Recall the goal of every iteration is to increase the objective function z

In each pivoting step, we swap a non-basic variable with a basic variable:

• The non-basic (entering) variable has a positive coefficient in the objective
function

• If no such variable exists, the objective function is optimal and we can stop

• The leaving variable is the one imposing the tightest constraint

An iteration will never make z worse

So when might we not converge to the optimal z?

33 / 39



Challenges: Termination

Recall the goal of every iteration is to increase the objective function z

In each pivoting step, we swap a non-basic variable with a basic variable:

• The non-basic (entering) variable has a positive coefficient in the objective
function

• If no such variable exists, the objective function is optimal and we can stop

• The leaving variable is the one imposing the tightest constraint

An iteration will never make z worse

So when might we not converge to the optimal z?

33 / 39



Challenges: Termination

Recall the goal of every iteration is to increase the objective function z

In each pivoting step, we swap a non-basic variable with a basic variable:

• The non-basic (entering) variable has a positive coefficient in the objective
function

• If no such variable exists, the objective function is optimal and we can stop

• The leaving variable is the one imposing the tightest constraint

An iteration will never make z worse

So when might we not converge to the optimal z?

33 / 39



Challenges: Termination

Recall the goal of every iteration is to increase the objective function z

In each pivoting step, we swap a non-basic variable with a basic variable:

• The non-basic (entering) variable has a positive coefficient in the objective
function

• If no such variable exists, the objective function is optimal and we can stop

• The leaving variable is the one imposing the tightest constraint

An iteration will never make z worse

So when might we not converge to the optimal z?

33 / 39



Challenges: Termination

Theorem 1
The simplex method fails to terminate iff it cycles, i.e., it generates the same dictionary
infinitely often.

Proof sketch:

1. There are only finitely many bases;

2. each bases uniquely defines the dictionary;

3. therefore, there are only finitely many values of z to try

If Simplex is cycling, then z has to stop increasing

34 / 39



Challenges: Termination

Theorem 1
The simplex method fails to terminate iff it cycles, i.e., it generates the same dictionary
infinitely often.

Proof sketch:

1. There are only finitely many bases;

2. each bases uniquely defines the dictionary;

3. therefore, there are only finitely many values of z to try

If Simplex is cycling, then z has to stop increasing

34 / 39



Challenges: Termination

Theorem 1
The simplex method fails to terminate iff it cycles, i.e., it generates the same dictionary
infinitely often.

Proof sketch:

1. There are only finitely many bases;

2. each bases uniquely defines the dictionary;

3. therefore, there are only finitely many values of z to try

If Simplex is cycling, then z has to stop increasing

34 / 39



Degenerate Pivots

Example: Current feasible solution: x1 7→ 0, x2 7→ 0, x3 7→ 0, x4 7→ 0

x1 = −2x2 + 3x3

z = 5x2 − x3 + 4x4

Dantzig’s rule: pick x2 as the entering variable

Leaving variable is x1, but the highest x2 can be is 0

So the value of z does not change after switching x1 and x2

A pivot is degenerate if it does not change the objective value

Cycling can only occur in the presence of a degenerate pivot

Note: Degenerate pivots are empirically rare

35 / 39



Degenerate Pivots

Example: Current feasible solution: x1 7→ 0, x2 7→ 0, x3 7→ 0, x4 7→ 0

x1 = −2x2 + 3x3

z = 5x2 − x3 + 4x4

Dantzig’s rule: pick x2 as the entering variable

Leaving variable is x1, but the highest x2 can be is 0

So the value of z does not change after switching x1 and x2

A pivot is degenerate if it does not change the objective value

Cycling can only occur in the presence of a degenerate pivot

Note: Degenerate pivots are empirically rare

35 / 39



Degenerate Pivots

Example: Current feasible solution: x1 7→ 0, x2 7→ 0, x3 7→ 0, x4 7→ 0

x1 = −2x2 + 3x3

z = 5x2 − x3 + 4x4

Dantzig’s rule: pick x2 as the entering variable

Leaving variable is x1, but the highest x2 can be is 0

So the value of z does not change after switching x1 and x2

A pivot is degenerate if it does not change the objective value

Cycling can only occur in the presence of a degenerate pivot

Note: Degenerate pivots are empirically rare

35 / 39



Degenerate Pivots

Example: Current feasible solution: x1 7→ 0, x2 7→ 0, x3 7→ 0, x4 7→ 0

x1 = −2x2 + 3x3

z = 5x2 − x3 + 4x4

Dantzig’s rule: pick x2 as the entering variable

Leaving variable is x1, but the highest x2 can be is 0

So the value of z does not change after switching x1 and x2

A pivot is degenerate if it does not change the objective value

Cycling can only occur in the presence of a degenerate pivot

Note: Degenerate pivots are empirically rare

35 / 39



Degenerate Pivots

Example: Current feasible solution: x1 7→ 0, x2 7→ 0, x3 7→ 0, x4 7→ 0

x1 = −2x2 + 3x3

z = 5x2 − x3 + 4x4

Dantzig’s rule: pick x2 as the entering variable

Leaving variable is x1, but the highest x2 can be is 0

So the value of z does not change after switching x1 and x2

A pivot is degenerate if it does not change the objective value

Cycling can only occur in the presence of a degenerate pivot

Note: Degenerate pivots are empirically rare

35 / 39



Degenerate Pivots

Example: Current feasible solution: x1 7→ 0, x2 7→ 0, x3 7→ 0, x4 7→ 0

x1 = −2x2 + 3x3

z = 5x2 − x3 + 4x4

Dantzig’s rule: pick x2 as the entering variable

Leaving variable is x1, but the highest x2 can be is 0

So the value of z does not change after switching x1 and x2

A pivot is degenerate if it does not change the objective value

Cycling can only occur in the presence of a degenerate pivot

Note: Degenerate pivots are empirically rare

35 / 39



Pivoting Strategies

There are variable selection strategies that guarantee termination

Bland’s Rule (1977): the simplex method terminates as long as the entering and
leaving variables are selected by the smallest-subscript rule in each iteration

36 / 39



Pivoting Strategies

There are variable selection strategies that guarantee termination

Bland’s Rule (1977): the simplex method terminates as long as the entering and
leaving variables are selected by the smallest-subscript rule in each iteration

Example: z = −5x1 − 3x2 + 4x3 + 40x4

The entering variable is: x3

Leaving variable: still the one imposing the tightest constraint,
but break tie by picking the smaller subscript

36 / 39



Pivoting Strategies

There are variable selection strategies that guarantee termination

Bland’s Rule (1977): the simplex method terminates as long as the entering and
leaving variables are selected by the smallest-subscript rule in each iteration

Modern solvers use more sophisticated heuristics (e.g., Steepest Edge) that might not
prevent cycling

36 / 39



Pivoting Strategies

There are variable selection strategies that guarantee termination

Bland’s Rule (1977): the simplex method terminates as long as the entering and
leaving variables are selected by the smallest-subscript rule in each iteration

Modern solvers use more sophisticated heuristics (e.g., Steepest Edge) that might not
prevent cycling

When cycling is detected: switch to Bland’s rule for a while

36 / 39



Pivoting Strategies

There are variable selection strategies that guarantee termination

Bland’s Rule (1977): the simplex method terminates as long as the entering and
leaving variables are selected by the smallest-subscript rule in each iteration

Modern solvers use more sophisticated heuristics (e.g., Steepest Edge) that might not
prevent cycling

When cycling is detected: switch to Bland’s rule for a while

Complexity: the common strategies all have worse-case exponential time

36 / 39



Possible improvements

• More sophisticated pivoting strategy

• Use rational-number instead of floating-point representation
(to handle numerical instability and avoid solutions unsoundness)

• Handle general Linear Programs
(variables can have non-zero lower bounds and/or finite upper bounds)

• Extract irreducible infeasible subset in case of infeasibility
(theory explanations)

• . . .

37 / 39



Application: Neural Network Verification

Property to verify: ∀x1. x2. (x1 ∈ [−2, 1] ∧ x2 ∈ [−2, 2] ⇒ y1 < y2)

1. Encoding of the neural network αn (linear + Rectified Linear Units):

r1b = x1 + x2 r2b = 2x1 − x2

y1 = −r1f + r2f y2 = r1f − r2f

(r1b ≤ 0 ∧ r1f = 0) ∨ (r1b ≥ 0 ∧ r1f = r1b)

(r2b ≤ 0 ∧ r2f = 0) ∨ (r2b ≥ 0 ∧ r2f = r2b)

2. Encoding of the the property αp: −2 ≤ x1 ≤ 1 − 2 ≤ x2 ≤ 2 y1 >= y2

3. Property holds iff αn ∧ αp is unsatisfiable

38 / 39



Application: Neural Network Verification

Property to verify: ∀x1. x2. (x1 ∈ [−2, 1] ∧ x2 ∈ [−2, 2] ⇒ y1 < y2)

1. Encoding of the neural network αn (linear + Rectified Linear Units):

r1b = x1 + x2 r2b = 2x1 − x2

y1 = −r1f + r2f y2 = r1f − r2f

(r1b ≤ 0 ∧ r1f = 0) ∨ (r1b ≥ 0 ∧ r1f = r1b)

(r2b ≤ 0 ∧ r2f = 0) ∨ (r2b ≥ 0 ∧ r2f = r2b)

2. Encoding of the the property αp: −2 ≤ x1 ≤ 1 − 2 ≤ x2 ≤ 2 y1 >= y2

3. Property holds iff αn ∧ αp is unsatisfiable

38 / 39



Practical properties
Robustness: ∀x′. ∥x− x′∥ < ϵ ⇒ ∥N(x)− N(x′)∥ < δ

There is no adversarial input within ϵ
distance

Reachability: ∀x. x ∈ [xl, xu] ⇒ y ∈ [yl, yu]

Whenever intruder is near and to the
right advise strong left

A lot of attention in recent years
39 / 39



Practical properties
Robustness: ∀x′. ∥x− x′∥ < ϵ ⇒ ∥N(x)− N(x′)∥ < δ

There is no adversarial input within ϵ
distance

Reachability: ∀x. x ∈ [xl, xu] ⇒ y ∈ [yl, yu]

Whenever intruder is near and to the
right advise strong left

A lot of attention in recent years
39 / 39


