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Consider formalizing and reasoning about these sentences in propositional logic

English PL
Every natural number is greater than 0
Not every natural number is greater than 0

What facts can we logically deduce? Only:

First-order Logic (FOL) allows us to (dis)prove the validity of sentences like the above

In this case, we need a first-order language for number theory
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Motivation

“Every positive integer number different from 1 is smaller than its square”
Intuitively, a first-order language has the following features:

® Asublanguage to denote individual things (numbers, people, colors, ...)
® Asublanguage to express properties of individuals and relations among them

® Asublanguage to denote groups of individuals with common features and ascribe them
to specific individuals

* Away to quantify statements about individuals
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Motivation

“Every positive integer number different from 1 is smaller than its square”

English

FOL language

generic number

the number

the square of

“x is positive”

« ”»

is different from

€«

is smaller than its square”

“for every integer number”

Sentence above in FOL:

The formula is true in the intended interpretation
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Outline

e Syntax (ML 7.1-2)
e Semantics (ML 7.3)

ML presents a one-sorted first-order logic
We will use a many-sorted first-order logic
This makes it convenient to present Satisfiability Modulo Theories later

Note: Many-sorted FOL is not more expressive than one-sorted FOL:
Itis possible to faithfully encode the former in the latter

However, using different sorts makes it more convenient to rule out non-sensical expressions
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Symbols

Review: what does the syntax of a logic consist of?

Symbols + rules for combining them

[ First-order logic is an umbrella term for different

The symbols of a first-order language consist of:

1. ( )

2. , , Where:
o is a set of re.g.,

. is a set of reg., -+, »

Note: We consider symbols as (not divisible further)
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Intuitively, f denotes a function that takes 11 values of respective sort asinputand
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Signature

The syntax of a first-order language is defined w.r.t. a , , where:
. is a set of re.g., ,
. is a set of re.g., =+ , S
We associate each with:
® an : a natural number denoting the number of arguments  takes
® 3 a -tuple of sorts:

We also assume an infinite set of
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Signature

The syntax of a first-order language is defined w.r.t. a , , where:
. is a set of re.g., ,
. is a set of re.g., =+ , S
We associate each with:
® an : a natural number denoting the number of arguments  takes
® 3 a -tuple of sorts:

Example: In the first-order language of number theory
° contains a sort and >" contains a function symbols 0, 1,
® 0and 1 have arity 0 and

® + hasarity 2 and
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Signature

We assume for every signature > that

® ) °includes a distinguished sort

J contains distinguished constants 17 and | with ,and
distinguished functions symbols =, with forall

There are two special kinds of function symbols:

: function symbols of 0 arity (e.g., |, T, 7, ,0)

: function symbols of return sort (e.g., =, <)
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First-Order Languages: Examples

Recall that a first-order language is defined wrt a signature

Elementary Number Theory
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First-Order Languages: Examples
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First-Order Languages

Propositional logic formulas

: Examples
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Expressions

Recall that an expression is any finite sequence of symbols

Example
[ ]
[}

Most expressions are not well-formed
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Expressions

Recall that an expression is any finite sequence of symbols

Example
[ ]
[}

Most expressions are not well-formed

Expressions of interest in FOL are and
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Terms

Expressions built up from function symbols, variables, and parentheses ((, ))

Formally, let /5 be the set of all variables and all constant symbols in some signature

For each function symbol of arity , we define a

are expressions that are generated from /5 by

Examples of terms in the language of number theory:

X
X
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Well-sorted terms

Not all well-formed terms are meaningful

We consider only terms that are wrt a given signature
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Well-sortedness

We formulate the notion of
over sequents of the form

where
° is
e {isawell-formed term

® gisasortof

wrt >~ with a

, a set of sorted variables

, a proof system
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Well-sortedness

We formulate the notion of wrt >~ with a , a proof system
over sequents of the form

VAR CONST
Fun
Atermtis wrt > and in a sort context
if is derivable in the sort system above Wecallfa

Note: Every well-sorted term is also well-formed
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Well-sorted terms example: Elementary number theory

Let and

Are these well-formed terms also well-s[

1.

2
3
4.
5

Note: As a notational convention, we will use an
infix notation for parentheses and common op-
erators like =, <, + and so on

So we will often write
instead of

N
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-Formulas

Given a signature >, an is any term thatis a > -term ¢ of sort
under some sort context

We define the following formula-building operations, denoted

for each var x and sort
for each var x and sort

Each isan
Each isa
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-Formulas

Given a signature >, an is any term thatis a > -term
under some sort context

We define the following formula-building operations, denoted

for each var x and sort
for each var x and sort

We simplify the notation as in PL by
¢ forgoing parentheses around top-level formulas —e.g.,
¢ forgoing parentheses around atomic formulas in infix form — e.g.,
® treating the binary connectives as n-ary and right associative — e.g.,

of sort
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-Formulas: Examples

Let

a x; be variables for all

Which of the following formulas (with atomic subformulas in infix form) are

well-formed?

o A Wb
x

Note: Formula (5) is well-formed but not

well-sorted

To know which formulas are well-sorted
we need to extend our sort system to the
logical operators
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Well-sorted formulas

We extend the sort system for terms with rules for the logical connectives and
quantifiers

BCONST NoTt
CONN
QUANT
Aformula o is wrt > in a sort context

if is derivable in the sort system above Wecall v a
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Exercise

Draw two Venn Diagram that illustrate the relations between
: terms
: well-formed terms
: well-sorted terms

: well-sorted atomic formulas
and between

: well-sorted atomic formulas
: well-formed formulas

: well-sorted formulas
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Notational conventions for formulas
From now on, to improve readability:

* We will use the infix notation for logical operators and function symbols typically written
in that notation (=, <, +,...)

® Finally, we will omit the sort symbol in equalities and quantifiers when it is clear from the
context or not important:

Example: instead of

* We may also omit parentheses by defining

® Same precedence for propositional connectives as in propositional logic
® Quantifiers have the highest precedence after
Example: -Vx. (p x) abbreviates (-(Vx. (px)))

* Finally, we will allow the use of parentheses following function symbols.
Example: instead of
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Avariable x may occur free in a >--formula o or not

We formalize that by defining inductively the of

Examples: Let be variables
o (provided x has sort )
[ J
[ ]
[ ]
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Free and Bound Variables

Avariable x may occur free in a >--formula o or not

We formalize that by defining inductively the of
Avariable ina > -formula o if
For , we say that v is in

The of xin v is the subformula
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Free and Bound Variables

Avariable x may occur free in a >--formula o or not

We formalize that by defining inductively the of

Can avariable both occur free and be bound in 2? Yes! (e.g., )

This can be confusing, so we typically rename the bound variables of a formula so that
they are distinct from its free variables (e.g., )
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FOL Semantics

Recall: The syntax of a first-order language is defined wrt a
where:

. is a set of

. is a set of

In propositional logic, the truth of a formula depends on the meaning of its variables

In first-order logic, the truth of a > -formula depends on:

1. the meaning of each sort symbol
2. the meaning of each function symbol
3. the meaning of each free variable

in the formula
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Semantics

Let o be a > -formula and let I be a sorting context that includes «’s free variables

The truth of «v is determined by of > and I" consisting of:
1. aninterpretation o~ of each as a nonempty set, the of
2. aninterpretation /" of each of rank as an n-ary total function
from to

3. aninterpretation x* of each as an element of
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Let o be a > -formula and let I be a sorting context that includes «’s free variables

The truth of «v is determined by of > and I" consisting of:
1. aninterpretation o~ of each as a nonempty set, the of
2. aninterpretation /" of each of rank as an n-ary total function
from to
3. aninterpretation x* of each as an element of

Note: We consider only interpretations 7 such that

[ ]
H ’

o forall , =, maps its two arguments to iff they are identical
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Consider a signature for a fragment of set theory with non-set elements:
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Semantics: Example

Consider a signature for a fragment of set theory with non-set elements:

) ) )

A possible interpretation 7 of

1. , the natural numbers

2. , all sets of natural numbers

3.

4., forall and , iff

5. for , and
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Semantics: Example

Consider a signature for a fragment of set theory with non-set elements:

) ) )

Another interpretation 7 of

1. , the natural numbers
2.
3. forall , iff m is divisible by

4. for , and
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Semantics: Example

Consider a signature for a fragment of set theory with non-set elements:

) ) )

There is an infinity of interpretations of !
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Term Semantics

Interpretations are analogous to a variable assignments in propositional logic

We define how to determine the truth value of a > -formula in an interpretation 7 in FOL in
analogy to how to determine the truth value of a formula under a variable assignment v in PL
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Term Semantics

The first step is to extend 7 by structural induction to an interpretation 7 for well-sorted terms

T t if tis a constant of > or a a variable
(..., thy ift=(ft;ty)

Example: 7° - [Pers ), ¥/ = [pa.ma.mar}, [ = [ x:Pers y:Pers. ..},
rank(pa) = rank(ma) = (Pers, Pers), rank(mar) = (Pers, Pers, Bool)

Let 7 such that
maZ = { Jim > Jill, Joe +> Jen, ...}, pal = { Jim ~ Joe, Jill = Jay, ...},
mar” = { (Jill, Joe) ~ true, (Joe, Jill) ~ true, (Jill, Jill) ~ false, ...}, x% = Jim, yZ = Joe
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Term Semantics

The first step is to extend 7 by structural induction to an interpretation 7 for well-sorted terms

T t if tis a constant of > or a a variable
FE(E, . ) ift=(fty-ty)

Example: 7° - [Pers ), ¥/ = [pa.ma.mar}, [ = [ x:Pers y:Pers. ..},
rank(pa) = rank(ma) = (Pers, Pers), rank(mar) = (Pers, Pers, Bool)

Let 7 such that
maZ = { Jim > Jill, Joe +> Jen, ...}, pal = { Jim ~ Joe, Jill = Jay, ...},

mar? = { (Jill, Joe) = true, (Joe, Jill) = true, (Jill, Jill) - false, ...}, x* = Jim, y* = Joe

(pa (max))T = pa”((max)7) = pa’ (ma” (xT)) = pa’(ma’® (x7))
= pa’(maZ(Jim)) = paZ(Jill) = Jay
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Term Semantics

The first step is to extend 7 by structural induction to an interpretation 7 for well-sorted terms

T t if tis a constant of > or a a variable
FL(tE, . 8D ift=(ftyty)

Example: 7° - [Pers ), ¥/ = [pa.ma.mar}, [ = [ x:Pers y:Pers. ..},
rank(pa) = rank(ma) = (Pers, Pers), rank(mar) = (Pers, Pers, Bool)

Let 7 such that

maZ = { Jim > Jill, Joe +> Jen, ...}, pal = { Jim ~ Joe, Jill = Jay, ...},

mar? = { (Jill, Joe) = true, (Joe, Jill) = true, (Jill, Jill) - false, ...}, x* = Jim, y* = Joe
(mar (max) y)Z = marf((max)Z, yT) = marf (maZ (x%), y%) = marf (maZ(x%), Joe)

= mar?(maZ(Jim), Joe) = marZ(Jill, Joe) = true
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Formula Semantics

We further extend 7 to well-sorted non-atomic formulas by structural induction as follows:
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. iff for some

. iff for all
where denotes the interpretation that maps x to o and is otherwise identical to
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We further extend 7 to well-sorted non-atomic formulas by structural induction as follows:

. iff
o iff
o iff or
. iff or
o iff
. iff for some
o iff forall
We write , and say that , to mean that

We write , and say that , to mean that
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Exercise

Let & be a > -formula and let I be a sorting context that includes o’s free variables

The truth of o is determined by of > and I consisting of:
1. aninterpretation o of each as a nonempty set, the of
2. aninterpretation /* of each of rank as an n-ary total function from
to
3. aninterpretation x* of each as an element of

Consider the signature where

For each of the following > -formulas, describe an interpretation that satisfies it
1.
2.
3.
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If 7 and .7 also agree on the variables of a >_-term t with variables in I, then

Proof.
By structural induction on f.

e |f fisavariable or a constant, then ,
Since by assumption, we have that

o |f with , then by assumption and for
by induction hypothesis.
It follows that

O]
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If 7 and 7 also agree on the free variables of a >_-formula . with free variables in |,

then

Note: The theorem implies that the interpretation of formula « is independent from
the values assigned to variables that do not occur free in

Corollary 3
The truth value of sentences is independent from how variables are interpreted.
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Proof.

Let 7 be any interpretation that satisfies ®. Since x does not occur free in any
formula of ® we can conclude that for all . Since , we have
that for all . But then by definition of V. Hence, every
interpretation that satisfies © also satisfies , thatis, .

Let 7 be any interpretation that satisfies ©. By assumption . This

implies that regardless of what x” is. Hence
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