
CS:4980 Topics in Computer Science II

Introduction to Automated Reasoning

Combining Theory Solvers with SAT solvers

Cesare Tinelli

Spring 2024

Credits

These slides are based on slides originally developed by Cesare Tinelli at the University of
Iowa, and by Clark Barrett, Caroline Trippel, and Andrew (Haoze) Wu at Stanford University.
Adapted by permission.

1 / 41

Theory of Uninterpreted Functions: TEUF

Recall: Given a signature Σ, the most general theory consists of the class of all
Σ-interpretations

This family of theories parameterized by the signature is known as the theory of
Equality with Uninterpreted Functions (EUF) or the empty theory

QF_UF (conjunctions of TEUF-literals) can be decided with a satisfiability proof system

The proof system can be implemented efficiently by a congruence closure procedure

Example: f (a) .
= a ∧ g(a) ̸ .= f (a)

Note: For simplicity, we only consider equality over one sort

2 / 41

Theory of Uninterpreted Functions: TEUF

Recall: Given a signature Σ, the most general theory consists of the class of all
Σ-interpretations

This family of theories parameterized by the signature is known as the theory of
Equality with Uninterpreted Functions (EUF) or the empty theory

QF_UF (conjunctions of TEUF-literals) can be decided with a satisfiability proof system

The proof system can be implemented efficiently by a congruence closure procedure

Example: f (a) .
= a ∧ g(a) ̸ .= f (a)

Note: For simplicity, we only consider equality over one sort

2 / 41

Theory of Uninterpreted Functions: TEUF

Recall: Given a signature Σ, the most general theory consists of the class of all
Σ-interpretations

This family of theories parameterized by the signature is known as the theory of
Equality with Uninterpreted Functions (EUF) or the empty theory

QF_UF (conjunctions of TEUF-literals) can be decided with a satisfiability proof system

The proof system can be implemented efficiently by a congruence closure procedure

Example: f (a) .
= a ∧ g(a) ̸ .= f (a)

Note: For simplicity, we only consider equality over one sort

2 / 41

Theory of Uninterpreted Functions: TEUF

Recall: Given a signature Σ, the most general theory consists of the class of all
Σ-interpretations

This family of theories parameterized by the signature is known as the theory of
Equality with Uninterpreted Functions (EUF) or the empty theory

QF_UF (conjunctions of TEUF-literals) can be decided with a satisfiability proof system

The proof system can be implemented efficiently by a congruence closure procedure

Example: f (a) .
= a ∧ g(a) ̸ .= f (a)

Note: For simplicity, we only consider equality over one sort

2 / 41

Congruence Closure: Definitions

Consider a set S and a binary relation R ⊆ S × S

R is an equivalence relation if it is reflexive, symmetric, and transitive

R is a congruence relation if

• it is an equivalence relation and
• for every n-ary function f : Sn → S, if R(ai, bi) holds for all a1, . . . an, y1, . . . , yn ∈ S,

then R(f (a1, . . . , an), f (a1, . . . , an)) holds as well

Is equality an congruence relation? Yes!

3 / 41

Congruence Closure: Definitions

Consider a set S and a binary relation R ⊆ S × S

R is an equivalence relation if it is reflexive, symmetric, and transitive

R is a congruence relation if

• it is an equivalence relation and
• for every n-ary function f : Sn → S, if R(ai, bi) holds for all a1, . . . an, y1, . . . , yn ∈ S,

then R(f (a1, . . . , an), f (a1, . . . , an)) holds as well

Is equality an congruence relation? Yes!

3 / 41

Congruence Closure: Definitions

Consider a set S and a binary relation R ⊆ S × S

R is an equivalence relation if it is reflexive, symmetric, and transitive

R is a congruence relation if

• it is an equivalence relation and
• for every n-ary function f : Sn → S, if R(ai, bi) holds for all a1, . . . an, y1, . . . , yn ∈ S,

then R(f (a1, . . . , an), f (a1, . . . , an)) holds as well

Is equality an congruence relation? Yes!

3 / 41

Congruence Closure: Definitions

Consider a set S and a binary relation R ⊆ S × S

R is an equivalence relation if it is reflexive, symmetric, and transitive

R is a congruence relation if

• it is an equivalence relation and
• for every n-ary function f : Sn → S, if R(ai, bi) holds for all a1, . . . an, y1, . . . , yn ∈ S,

then R(f (a1, . . . , an), f (a1, . . . , an)) holds as well

Is equality an congruence relation? Yes!

3 / 41

Congruence Closure: Definitions

Consider a set S and a binary relation R ⊆ S × S

R is an equivalence relation if it is reflexive, symmetric, and transitive

R is a congruence relation if

• it is an equivalence relation and
• for every n-ary function f : Sn → S, if R(ai, bi) holds for all a1, . . . an, y1, . . . , yn ∈ S,

then R(f (a1, . . . , an), f (a1, . . . , an)) holds as well

Is equality an congruence relation? Yes!

3 / 41

Congruence Closure: Definitions

Consider a set S and a binary relation R ⊆ S × S

The equivalence closure RE of R is the smallest relation that

• contains R

• is a equivalent relation

The congruence closure RC of R is the smallest relation that

• contains R

• is a congruence relation

4 / 41

Congruence Closure: Definitions

Consider a set S and a binary relation R ⊆ S × S

The equivalence closure RE of R is the smallest relation that

• contains R

• is a equivalent relation

The congruence closure RC of R is the smallest relation that

• contains R

• is a congruence relation

4 / 41

Congruence Closure: Definitions

Consider a set S and a binary relation R ⊆ S × S

The equivalence closure RE of R is the smallest relation that

• contains R

• is a equivalent relation

The congruence closure RC of R is the smallest relation that

• contains R

• is a congruence relation

4 / 41

Congruence Closure Algorithm

Given a Σ-formula α, its subterm set Sα consists of the subterms of α that do not
contain .

=

Example: α := f (f (a)) .
= a ∧ f (f (f (a))) .

= a ∧ g(a) ̸ .= g(f (a))

Sα :
.
= { a, f (a), f (f (a)), f (f (f (a))), g(a), g(f (a)) }

High-level idea:

1. Partition the literals into a set of equalities E and a set of inequalities D

2. Construct the congruence closure EC of E over Sα

3. α is unsatisfiable iff there exists t1 ̸
.
= t2 ∈ D and (t1, t2) ∈ EC

5 / 41

Congruence Closure Algorithm

Given a Σ-formula α, its subterm set Sα consists of the subterms of α that do not
contain .

=

Example: α := f (f (a)) .
= a ∧ f (f (f (a))) .

= a ∧ g(a) ̸ .= g(f (a))

Sα :
.
= { a, f (a), f (f (a)), f (f (f (a))), g(a), g(f (a)) }

High-level idea:

1. Partition the literals into a set of equalities E and a set of inequalities D

2. Construct the congruence closure EC of E over Sα

3. α is unsatisfiable iff there exists t1 ̸
.
= t2 ∈ D and (t1, t2) ∈ EC

5 / 41

Congruence Closure Algorithm

Given a Σ-formula α, its subterm set Sα consists of the subterms of α that do not
contain .

=

Example: α := f (f (a)) .
= a ∧ f (f (f (a))) .

= a ∧ g(a) ̸ .= g(f (a))

Sα :
.
= { a, f (a), f (f (a)), f (f (f (a))), g(a), g(f (a)) }

High-level idea:

1. Partition the literals into a set of equalities E and a set of inequalities D

2. Construct the congruence closure EC of E over Sα

3. α is unsatisfiable iff there exists t1 ̸
.
= t2 ∈ D and (t1, t2) ∈ EC

5 / 41

Congruence Closure Algorithm

Given a Σ-formula α, its subterm set Sα consists of the subterms of α that do not
contain .

=

Example: α := f (f (a)) .
= a ∧ f (f (f (a))) .

= a ∧ g(a) ̸ .= g(f (a))

Sα :
.
= { a, f (a), f (f (a)), f (f (f (a))), g(a), g(f (a)) }

High-level idea:

1. Partition the literals into a set of equalities E and a set of inequalities D

2. Construct the congruence closure EC of E over Sα

3. α is unsatisfiable iff there exists t1 ̸
.
= t2 ∈ D and (t1, t2) ∈ EC

5 / 41

Congruence Closure: Algorithm

α = f (f (a)) .
= a ∧ f (f (f (a))) .

= a ∧ g(a) ̸ .= g(f (a))

Sα = { a, f (a), f (f (a)), f (f (f (a))), g(a), g(f (a)) }

Step 1: place each subterm of α into its own congruence class:

{ a }, { f (a) }, { f (f (a)) }, { f (f (f (a))) }, { g(a) }, { g(f (a)) }

6 / 41

Congruence Closure: Algorithm

α = f (f (a)) .
= a ∧ f (f (f (a))) .

= a ∧ g(a) ̸ .= g(f (a))

Sα = { a, f (a), f (f (a)), f (f (f (a))), g(a), g(f (a)) }

Step 1: place each subterm of α into its own congruence class:

{ a }, { f (a) }, { f (f (a)) }, { f (f (f (a))) }, { g(a) }, { g(f (a)) }

6 / 41

Congruence Closure: Algorithm

Step 2: For each positive literal t1
.
= t2 in α

• merge the congruence classes for t1 and t2
• propagate the resulting congruences

α = f (f (a)) .
= a ∧ f (f (f (a))) .

= a ∧ g(a) ̸ .= g(f (a))

{ a }, { f (a) }, { f (f (a)) }, { f (f (f (a))) }, { g(a) }, { g(f (a)) }

7 / 41

Congruence Closure: Algorithm

Step 2: For each positive literal t1
.
= t2 in α

• merge the congruence classes for t1 and t2
• propagate the resulting congruences

α = f (f (a)) .
= a ∧ f (f (f (a))) .

= a ∧ g(a) ̸ .= g(f (a))

{ a, f (f (a)) }, { f (a) }, { f (f (f (a))) }, { g(a) }, { g(f (a)) }

7 / 41

Congruence Closure: Algorithm

Step 2: For each positive literal t1
.
= t2 in α

• merge the congruence classes for t1 and t2
• propagate the resulting congruences

α = f (f (a)) .
= a ∧ f (f (f (a))) .

= a ∧ g(a) ̸ .= g(f (a))

{ a, f (f (a)) }, { f (a), f (f (f (a))) }, { g(a) }, { g(f (a)) }

7 / 41

Congruence Closure: Algorithm

Step 2: For each positive literal t1
.
= t2 in α

• merge the congruence classes for t1 and t2
• propagate the resulting congruences

α = f (f (a)) .
= a ∧ f (f (f (a))) .

= a ∧ g(a) ̸ .= g(f (a))

{ a, f (a), f (f (a)), f (f (f (a))) }, { g(a) }, { g(f (a)) }

7 / 41

Congruence Closure: Algorithm

Step 2: For each positive literal t1
.
= t2 in α

• merge the congruence classes for t1 and t2
• propagate the resulting congruences

α = f (f (a)) .
= a ∧ f (f (f (a))) .

= a ∧ g(a) ̸ .= g(f (a))

{ a, f (a), f (f (a)), f (f (f (a))) }, { g(a), g(f (a)) }

7 / 41

Congruence Closure: Algorithm

α = f (f (a)) .
= a ∧ f (f (f (a))) .

= a ∧ g(a) ̸ .= g(f (a))

{ a, f (a), f (f (a)), f (f (f (a))) }, { g(a), g(f (a)) }

Step 3: α is TEUF-unsatisfiable iff it contains a negative literal t1 ̸
.
= t2, with t1 and t2 in

the same congruence class

Note: This algorithm can be implemented efficiently with a union-find data structure (CC.
Chap. 9.1-9.3)

8 / 41

Congruence Closure: Algorithm

α = f (f (a)) .
= a ∧ f (f (f (a))) .

= a ∧ g(a) ̸ .= g(f (a))

{ a, f (a), f (f (a)), f (f (f (a))) }, { g(a), g(f (a)) }

Step 3: α is TEUF-unsatisfiable iff it contains a negative literal t1 ̸
.
= t2, with t1 and t2 in

the same congruence class

Note: This algorithm can be implemented efficiently with a union-find data structure (CC.
Chap. 9.1-9.3)

8 / 41

Congruence Closure: still an active research problem

Downey, et al. “Variations on the common subexpressions problem”, 1980.

Nieuwenhuis and Oliveras, “Proof-Producing Congruence Closure”, 2005.

Willsey, et al. “egg: Fast and extensible equality saturation”, 2021.

9 / 41

What if we have disjunctions?

The congruence closure checks the satisfiability of conjunctions of TEUF-literals

What about
g(a) .

= c ∧ (f(g(a)) ̸ .= f(c) ∨ g(a) .
= d) ∧ c ̸ .= d

Theorem 1
For all theories T , the T -satisfiability of quantifier-free formulas is decidable iff the
T -satisfiability of conjunctions/sets of literals is decidable.

Proof.
Convert the formula to DNF and check if any of its disjuncts is T -satisfiable.

Recall: the DNF conversion is very inefficient!

A better solution: exploit propositional satisfiability technology

10 / 41

What if we have disjunctions?

The congruence closure checks the satisfiability of conjunctions of TEUF-literals

What about
g(a) .

= c ∧ (f(g(a)) ̸ .= f(c) ∨ g(a) .
= d) ∧ c ̸ .= d

Theorem 1
For all theories T , the T -satisfiability of quantifier-free formulas is decidable iff the
T -satisfiability of conjunctions/sets of literals is decidable.

Proof.
Convert the formula to DNF and check if any of its disjuncts is T -satisfiable.

Recall: the DNF conversion is very inefficient!

A better solution: exploit propositional satisfiability technology

10 / 41

What if we have disjunctions?

The congruence closure checks the satisfiability of conjunctions of TEUF-literals

What about
g(a) .

= c ∧ (f(g(a)) ̸ .= f(c) ∨ g(a) .
= d) ∧ c ̸ .= d

Theorem 1
For all theories T , the T -satisfiability of quantifier-free formulas is decidable iff the
T -satisfiability of conjunctions/sets of literals is decidable.

Proof.
Convert the formula to DNF and check if any of its disjuncts is T -satisfiable.

Recall: the DNF conversion is very inefficient!

A better solution: exploit propositional satisfiability technology

10 / 41

What if we have disjunctions?

The congruence closure checks the satisfiability of conjunctions of TEUF-literals

What about
g(a) .

= c ∧ (f(g(a)) ̸ .= f(c) ∨ g(a) .
= d) ∧ c ̸ .= d

Theorem 1
For all theories T , the T -satisfiability of quantifier-free formulas is decidable iff the
T -satisfiability of conjunctions/sets of literals is decidable.

Proof.
Convert the formula to DNF and check if any of its disjuncts is T -satisfiable.

Recall: the DNF conversion is very inefficient!

A better solution: exploit propositional satisfiability technology

10 / 41

What if we have disjunctions?

The congruence closure checks the satisfiability of conjunctions of TEUF-literals

What about
g(a) .

= c ∧ (f(g(a)) ̸ .= f(c) ∨ g(a) .
= d) ∧ c ̸ .= d

Theorem 1
For all theories T , the T -satisfiability of quantifier-free formulas is decidable iff the
T -satisfiability of conjunctions/sets of literals is decidable.

Proof.
Convert the formula to DNF and check if any of its disjuncts is T -satisfiable.

Recall: the DNF conversion is very inefficient!

A better solution: exploit propositional satisfiability technology

10 / 41

Lifting SAT Technology to SMT

Two main approaches:

1. Eager

• translate into an equisatisfiable propositional formula
• feed it to any SAT solver

2. Lazy

• abstract the input formula to a propositional one
• feed it to a (CDCL-based) SAT solver
• use a theory decision procedure to refine the formula and guide the SAT solver
• Notable systems: Bitwuzla, cvc5, MathSAT, Yices, Z3

11 / 41

Lifting SAT Technology to SMT

Two main approaches:

1. Eager

• translate into an equisatisfiable propositional formula
• feed it to any SAT solver

2. Lazy

• abstract the input formula to a propositional one
• feed it to a (CDCL-based) SAT solver
• use a theory decision procedure to refine the formula and guide the SAT solver
• Notable systems: Bitwuzla, cvc5, MathSAT, Yices, Z3

11 / 41

Lazy Approach for SMT

Given a quantifier-free Σ-formula φ, for each atomic formula α in φ, we associate a
unique propositional variable e(α)

The Boolean skeleton of a formula φ is a propositional logic formula, where each
atomic formula α in φ is replaced with e(α)

Example:
φ := x < 0 ∨ (x + y < 1 ∧ ¬(x < 0)) ⇒ y < 0

Let e(x < 0) = p1, e(x + y < 1) = p2, e(y < 0) = p3

What is the Boolean skeleton of φ? p1 ∨ (p2 ∧ ¬p1) ⇒ p3

12 / 41

Lazy Approach for SMT

Given a quantifier-free Σ-formula φ, for each atomic formula α in φ, we associate a
unique propositional variable e(α)

The Boolean skeleton of a formula φ is a propositional logic formula, where each
atomic formula α in φ is replaced with e(α)

Example:
φ := x < 0 ∨ (x + y < 1 ∧ ¬(x < 0)) ⇒ y < 0

Let e(x < 0) = p1, e(x + y < 1) = p2, e(y < 0) = p3

What is the Boolean skeleton of φ? p1 ∨ (p2 ∧ ¬p1) ⇒ p3

12 / 41

Lazy Approach for SMT

Given a quantifier-free Σ-formula φ, for each atomic formula α in φ, we associate a
unique propositional variable e(α)

The Boolean skeleton of a formula φ is a propositional logic formula, where each
atomic formula α in φ is replaced with e(α)

Example:
φ := x < 0 ∨ (x + y < 1 ∧ ¬(x < 0)) ⇒ y < 0

Let e(x < 0) = p1, e(x + y < 1) = p2, e(y < 0) = p3

What is the Boolean skeleton of φ? p1 ∨ (p2 ∧ ¬p1) ⇒ p3

12 / 41

(Very) Lazy Approach for SMT – Example

g(a) .
= c ∧ (f (g(a)) ̸ .= f (c) ∨ g(a) .

= d) ∧ c ̸ .= d

Simplest setting:

• Off-line SAT solver
• Non-incremental theory solver for conjunctions of equalities and disequalities
• Theory atoms (e.g., g(a) .

= c) abstracted to propositional atoms (e.g., 1)

13 / 41

(Very) Lazy Approach for SMT – Example

g(a) .
= c ∧ (f (g(a)) ̸ .= f (c) ∨ g(a) .

= d) ∧ c ̸ .= d

Simplest setting:

• Off-line SAT solver
• Non-incremental theory solver for conjunctions of equalities and disequalities
• Theory atoms (e.g., g(a) .

= c) abstracted to propositional atoms (e.g., 1)

13 / 41

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

14 / 41

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

14 / 41

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

14 / 41

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

14 / 41

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

14 / 41

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

14 / 41

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

14 / 41

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

14 / 41

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

14 / 41

(Very) Lazy Approach for SMT – Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

• Send {1, 2̄ ∨ 3, 4̄} to SAT solver
• SAT solver returns model {1, 2̄, 4̄}
• Theory solver finds (concretization of) {1, 2̄, 4̄} unsat in TEUF

(meaning that 1̄ ∨ 2 ∨ 4 is valid in TEUF)
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4} to SAT solver
• SAT solver returns model {1, 3, 4̄}
• Theory solver finds {1, 3, 4̄} unsat
• Send {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} to SAT solver
• SAT solver finds {1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4} unsat

14 / 41

Done! The original formula is
unsatisfiable in TEUF

Eager Approach for SMT – Example

f(b) .
= a ∨ f(a) ̸ .= a

Step 1: Eliminate all function applications (Ackermann’s encoding)

• introduce a constant symbol fx to replace function application f(x)

• for each pair of introduced variables fx, fy, add the formula x .
= y ⇒ fx

.
= fy

f(b) ⇒ fb f(a) ⇒ fa

(fb
.
= a ∨ fa ̸ .= a) ∧ (a .

= b ⇒ fa
.
= fb)

Now, atomic formulas are equalities between constants/variables

15 / 41

Eager Approach for SMT – Example

f(b) .
= a ∨ f(a) ̸ .= a

Step 1: Eliminate all function applications (Ackermann’s encoding)

• introduce a constant symbol fx to replace function application f(x)

• for each pair of introduced variables fx, fy, add the formula x .
= y ⇒ fx

.
= fy

f(b) ⇒ fb f(a) ⇒ fa

(fb
.
= a ∨ fa ̸ .= a) ∧ (a .

= b ⇒ fa
.
= fb)

Now, atomic formulas are equalities between constants/variables

15 / 41

Eager Approach for SMT – Example

f(b) .
= a ∨ f(a) ̸ .= a

Step 1: Eliminate all function applications (Ackermann’s encoding)

• introduce a constant symbol fx to replace function application f(x)

• for each pair of introduced variables fx, fy, add the formula x .
= y ⇒ fx

.
= fy

f(b) ⇒ fb f(a) ⇒ fa

(fb
.
= a ∨ fa ̸ .= a) ∧ (a .

= b ⇒ fa
.
= fb)

Now, atomic formulas are equalities between constants/variables

15 / 41

Eager Approach for SMT – Example
Rename fb as c and fa as d:

(fb
.
= a ∨ fa ̸ .= a) ∧ (a .

= b ⇒ fa
.
= fb)

becomes
(c .

= a ∨ d ̸ .= a) ∧ (a .
= b ⇒ d .

= c)

Step 2: Eliminate all equalities

• replace each pair of constants x, y with a unique propositional variable px,y

• add facts about reflexivity, symmetry, transitivity
(pc,a ∨ ¬pd,a) ∧ (pa,b ⇒ pd,c)

∧ pa,a ∧ pb,b ∧ pc,c ∧ pd,d ∧ (pa,b ⇔ pb,a) ∧ (pa,c ⇔ pc,a) ∧ (pa,d ⇔ pd,a) ∧ · · ·
∧ ((pa,b ∧ pb,c) ⇒ pa,c) ∧ ((pa,c ∧ pc,d) ⇒ pa,d) ∧ · · ·

The resulting propositional formula is equisatisfiable with the original TEUF-formula

Note: Not all the transitivity cases are needed
16 / 41

Eager Approach for SMT – Example
Rename fb as c and fa as d:

(fb
.
= a ∨ fa ̸ .= a) ∧ (a .

= b ⇒ fa
.
= fb)

becomes
(c .

= a ∨ d ̸ .= a) ∧ (a .
= b ⇒ d .

= c)

Step 2: Eliminate all equalities

• replace each pair of constants x, y with a unique propositional variable px,y

• add facts about reflexivity, symmetry, transitivity
(pc,a ∨ ¬pd,a) ∧ (pa,b ⇒ pd,c)

∧ pa,a ∧ pb,b ∧ pc,c ∧ pd,d ∧ (pa,b ⇔ pb,a) ∧ (pa,c ⇔ pc,a) ∧ (pa,d ⇔ pd,a) ∧ · · ·
∧ ((pa,b ∧ pb,c) ⇒ pa,c) ∧ ((pa,c ∧ pc,d) ⇒ pa,d) ∧ · · ·

The resulting propositional formula is equisatisfiable with the original TEUF-formula

Note: Not all the transitivity cases are needed
16 / 41

Eager Approach for SMT – Example
Rename fb as c and fa as d:

(fb
.
= a ∨ fa ̸ .= a) ∧ (a .

= b ⇒ fa
.
= fb)

becomes
(c .

= a ∨ d ̸ .= a) ∧ (a .
= b ⇒ d .

= c)

Step 2: Eliminate all equalities

• replace each pair of constants x, y with a unique propositional variable px,y

• add facts about reflexivity, symmetry, transitivity
(pc,a ∨ ¬pd,a) ∧ (pa,b ⇒ pd,c)

∧ pa,a ∧ pb,b ∧ pc,c ∧ pd,d ∧ (pa,b ⇔ pb,a) ∧ (pa,c ⇔ pc,a) ∧ (pa,d ⇔ pd,a) ∧ · · ·
∧ ((pa,b ∧ pb,c) ⇒ pa,c) ∧ ((pa,c ∧ pc,d) ⇒ pa,d) ∧ · · ·

The resulting propositional formula is equisatisfiable with the original TEUF-formula

Note: Not all the transitivity cases are needed
16 / 41

Eager Approach for SMT – Example
Rename fb as c and fa as d:

(fb
.
= a ∨ fa ̸ .= a) ∧ (a .

= b ⇒ fa
.
= fb)

becomes
(c .

= a ∨ d ̸ .= a) ∧ (a .
= b ⇒ d .

= c)

Step 2: Eliminate all equalities

• replace each pair of constants x, y with a unique propositional variable px,y

• add facts about reflexivity, symmetry, transitivity
(pc,a ∨ ¬pd,a) ∧ (pa,b ⇒ pd,c)

∧ pa,a ∧ pb,b ∧ pc,c ∧ pd,d ∧ (pa,b ⇔ pb,a) ∧ (pa,c ⇔ pc,a) ∧ (pa,d ⇔ pd,a) ∧ · · ·
∧ ((pa,b ∧ pb,c) ⇒ pa,c) ∧ ((pa,c ∧ pc,d) ⇒ pa,d) ∧ · · ·

The resulting propositional formula is equisatisfiable with the original TEUF-formula

Note: Not all the transitivity cases are needed
16 / 41

Discussion: eager vs. lazy approach

Eager

• translate into an equisatisfiable propositional formula
• feed it to any SAT solver

Lazy

• abstract the input formula to a propositional one
• feed it to a (CDCL-based) SAT solver
• use a theory decision procedure to refine the formula and guide the SAT solver

What are the pros and cons of the two approaches?

17 / 41

Discussion: eager vs. lazy approach

Eager

• translate into an equisatisfiable propositional formula
• feed it to any SAT solver

Lazy

• abstract the input formula to a propositional one
• feed it to a (CDCL-based) SAT solver
• use a theory decision procedure to refine the formula and guide the SAT solver

What are the pros and cons of the two approaches?

17 / 41

Discussion: eager vs. lazy approach

• Eager
• Can always use the best SAT solver off the shelf
• Requires care in encoding
• Tends not to scale well

• Lazy
• Theory-specific reasoning
• Designing new theory solvers can be challenging
• Might require extension of a SAT solver for more efficiency interplay with theory

solver

18 / 41

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause

If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of M and
add ¬M0 as a clause

• If M is T -unsatisfiable, add clause and restart

If M is T -unsatisfiable, backtrack to some point
where the assignment was still T -satisfiable

19 / 41

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause

If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of M and
add ¬M0 as a clause

• If M is T -unsatisfiable, add clause and restart

If M is T -unsatisfiable, backtrack to some point
where the assignment was still T -satisfiable

19 / 41

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause

If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of M and
add ¬M0 as a clause

• If M is T -unsatisfiable, add clause and restart

If M is T -unsatisfiable, backtrack to some point
where the assignment was still T -satisfiable

19 / 41

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause

If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of M and
add ¬M0 as a clause

• If M is T -unsatisfiable, add clause and restart

If M is T -unsatisfiable, backtrack to some point
where the assignment was still T -satisfiable

19 / 41

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause

If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of M and
add ¬M0 as a clause

• If M is T -unsatisfiable, add clause and restart

If M is T -unsatisfiable, backtrack to some point
where the assignment was still T -satisfiable

19 / 41

Lazy Approach – Enhancements

Several enhancements are possible to increase efficiency:

• Check T -satisfiability only of full propositional model

Check T -satisfiability of partial assignment M as it grows

• If M is T -unsatisfiable, add ¬M as a clause

If M is T -unsatisfiable, identify a T -unsatisfiable subset M0 of M and
add ¬M0 as a clause

• If M is T -unsatisfiable, add clause and restart

If M is T -unsatisfiable, backtrack to some point
where the assignment was still T -satisfiable

19 / 41

Lazy Approach – Main Benefits

Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

The theory solver works only with conjunctions of literals

Modular approach:

• SAT and theory solvers communicate via a simple API

• SMT for a new theory only requires new theory solver

• An off-the-shelf SAT solver can be embedded in a lazy SMT system with low effort

20 / 41

Lazy Approach – Main Benefits

Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

The theory solver works only with conjunctions of literals

Modular approach:

• SAT and theory solvers communicate via a simple API

• SMT for a new theory only requires new theory solver

• An off-the-shelf SAT solver can be embedded in a lazy SMT system with low effort

20 / 41

Lazy Approach – Main Benefits

Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

The theory solver works only with conjunctions of literals

Modular approach:

• SAT and theory solvers communicate via a simple API

• SMT for a new theory only requires new theory solver

• An off-the-shelf SAT solver can be embedded in a lazy SMT system with low effort

20 / 41

An Abstract Framework for Lazy SMT

Several variants and enhancements of lazy SMT solvers exist

They can be modeled a satisfiability proof system like those for Abstract DPLL and
Abstract CDCL

21 / 41

Review: Abstract DPLL
States:

UNSAT ⟨M,∆⟩

where

• M is a sequence of literals and decision points •
denoting a partial variable assignment

• ∆ is a set of clauses denoting a CNF formula

22 / 41

Review: Abstract DPLL
States:

UNSAT ⟨M,∆⟩

where

• M is a sequence of literals and decision points •
denoting a partial variable assignment

• ∆ is a set of clauses denoting a CNF formula

Note: When convenient, we treat M as a set

Provided M contains no complementary literals it determines the assignment

vM(p) =


true if p ∈ M
false if ¬p ∈ M
undef otherwise

22 / 41

Review: Abstract DPLL
States:

UNSAT ⟨M,∆⟩

where

• M is a sequence of literals and decision points •
denoting a partial variable assignment

• ∆ is a set of clauses denoting a CNF formula

Notation: If M = M0 • M1 • · · · • Mn where each Mi contains no decision points

• Mi is decision level i of M

• M[i] denotes the subsequence M0 • · · · • Mi, from decision level 0 to decision level i

22 / 41

Review: Abstract DPLL
States:

UNSAT ⟨M,∆⟩

Initial state:

• ⟨(),∆0⟩, where ∆0 is to be checked for satisfiability

22 / 41

Review: Abstract DPLL
States:

UNSAT ⟨M,∆⟩

Initial state:

• ⟨(),∆0⟩, where ∆0 is to be checked for satisfiability

Expected final states:

• UNSAT if ∆0 is unsatisfiable
• ⟨M,∆n⟩ otherwise, where ∆n is equisatisfiable with ∆0 and satisfied by M

22 / 41

Review: Abstract CDCL
States:

UNSAT ⟨M,∆, C⟩
where

• M is a sequence of literals and decision points • (denoting a partial truth assignment)

• ∆ is a set of clauses denoting a CNF formula
• C is either no or a conflict clause

Initial state:

• ⟨(),∆0, no⟩, where ∆0 is to be checked for satisfiability

Expected final states:

• UNSAT if ∆0 is unsatisfiable
• ⟨M,∆n, no⟩ otherwise, where ∆n is equisatisfiable with ∆0 and satisfied by M

23 / 41

Review: Abstract CDCL
States:

UNSAT ⟨M,∆, C⟩
where

• M is a sequence of literals and decision points • (denoting a partial truth assignment)

• ∆ is a set of clauses denoting a CNF formula
• C is either no or a conflict clause

Initial state:

• ⟨(),∆0, no⟩, where ∆0 is to be checked for satisfiability

Expected final states:

• UNSAT if ∆0 is unsatisfiable
• ⟨M,∆n, no⟩ otherwise, where ∆n is equisatisfiable with ∆0 and satisfied by M

23 / 41

Review: Abstract CDCL
States:

UNSAT ⟨M,∆, C⟩
where

• M is a sequence of literals and decision points • (denoting a partial truth assignment)

• ∆ is a set of clauses denoting a CNF formula
• C is either no or a conflict clause

Initial state:

• ⟨(),∆0, no⟩, where ∆0 is to be checked for satisfiability

Expected final states:

• UNSAT if ∆0 is unsatisfiable
• ⟨M,∆n, no⟩ otherwise, where ∆n is equisatisfiable with ∆0 and satisfied by M

23 / 41

Review: CDCL proof rules

l ∈ Lits(∆) l, l̄ /∈ M
DECIDE

M := M • l

C ̸= no • /∈ M
FAIL UNSAT

RESTART
M := M[0] C := no

D is a clause ∆ |= D D /∈ ∆
LEARN

∆ := ∆ ∪ {D}

{l1, . . . , ln, l} ∈ ∆ l̄1, . . . , l̄n ∈ M l, l̄ /∈ M
PROPAGATE

M := M l

C = {l} ∪ D {l1, . . . , ln, l̄} ∈ ∆ l̄1, . . . , l̄n, l̄ ∈ M l̄1, . . . , l̄n ≺M l̄
EXPLAIN

C := {l1, . . . , ln} ∪ D

C = {l1, . . . , ln, l} lev(̄l1), . . . , lev(̄ln) ≤ i < lev(̄l)
BACKJUMP

M := M[i]l C := no

C = no {l1, . . . , ln} ∈ ∆ l̄1, . . . , l̄n ∈ M
CONflICT

C := {l1, . . . , ln}

C = no ∆ = ∆′ ∪ {C} ∆′ |= C
FORGET

∆ := ∆′

We are going to extend this abstract framework to lazy SMT

24 / 41

Review: CDCL proof rules

l ∈ Lits(∆) l, l̄ /∈ M
DECIDE

M := M • l

C ̸= no • /∈ M
FAIL UNSAT

RESTART
M := M[0] C := no

D is a clause ∆ |= D D /∈ ∆
LEARN

∆ := ∆ ∪ {D}

{l1, . . . , ln, l} ∈ ∆ l̄1, . . . , l̄n ∈ M l, l̄ /∈ M
PROPAGATE

M := M l

C = {l} ∪ D {l1, . . . , ln, l̄} ∈ ∆ l̄1, . . . , l̄n, l̄ ∈ M l̄1, . . . , l̄n ≺M l̄
EXPLAIN

C := {l1, . . . , ln} ∪ D

C = {l1, . . . , ln, l} lev(̄l1), . . . , lev(̄ln) ≤ i < lev(̄l)
BACKJUMP

M := M[i]l C := no

C = no {l1, . . . , ln} ∈ ∆ l̄1, . . . , l̄n ∈ M
CONflICT

C := {l1, . . . , ln}

C = no ∆ = ∆′ ∪ {C} ∆′ |= C
FORGET

∆ := ∆′

We are going to extend this abstract framework to lazy SMT

24 / 41

From SAT to SMT

Same state components and transitions as in Abstract CDCL except that

• ∆ contains quantifier-free clauses in some theory T

• M is a sequence of theory literals (i.e., atomic formulas or their negations) and
decision points

• CDCL Rules operate on the Boolean skeleton of ∆,
given by a mapping from theory literals to propositional literals

• The proofs system is augmented with SMT-specific rules:
T -CONflICT, T -PROPAGATE and T -EXPLAIN

• Invariant: either C ̸= no or ∆ |=T C and M |=p ¬C

25 / 41

SMT-level Rules

At SAT level:

C = no {l1, . . . , ln} ∈ ∆ l̄1, . . . , l̄n ∈ M
CONflICT C := {l1, . . . , ln}

At SMT level:

C = no l̄1 ∧ · · · ∧ l̄n |=T ⊥ l̄1, . . . , l̄n ∈ M
T -CONflICT C := {l1, . . . , ln}

If a set of literals in M are unsatisfiable in T , make their negation a conflict clause

26 / 41

SMT-level Rules

At SAT level:

{l1, . . . , ln, l} ∈ ∆ l̄1, . . . , l̄n ∈ M l, l̄ /∈ M
PROPAGATE M := M l

At SMT level:

l ∈ Lits(∆) M |=T l l, l̄ /∈ M
T -PROPAGATE M := M l

If M entails some literal l in T , extend it with l

27 / 41

SMT-level Rules

At SAT level:

C = {l} ∪ D {l1, . . . , ln, l̄} ∈ ∆ l̄1, . . . , l̄n, l̄ ∈ M l̄1, . . . , l̄n ≺M l̄
EXPLAIN C := {l1, . . . , ln} ∪ D

At SMT level:

C = {l} ∪ D l̄1 ∧ · · · ∧ l̄n |=T l̄ l̄1, . . . , l̄n ≺M l̄
T -EXPLAIN

C := {l1, · · · , ln} ∪ D

If the complement l̄ of a literal in the conflict clause is entailed in T by some literals l̄1, . . . , l̄n
at lower decision levels, derive a new conflict clause by resolution with {l1, . . . , ln, l̄}

28 / 41

CDCL Modulo Theories proof rules

l ∈ Lits(∆) l, l̄ /∈ M
DECIDE

M := M • l

C ̸= no • /∈ M
FAIL UNSAT

RESTART
M := M[0] C := no

D is a clause ∆ |= D D /∈ ∆
LEARN

∆ := ∆ ∪ {D}

C = no ∆ = ∆′ ∪ {C} ∆′ |= C
FORGET

∆ := ∆′

l ∈ Lits(∆) M |=T l l, l̄ /∈ M
T -PROPAGATE

M := M l

C = no l̄1 ∧ · · · ∧ l̄n |=T ⊥ l̄1, . . . , l̄n ∈ M
T -CONflICT

C := {l1, . . . , ln}

C = {l} ∪ D l̄1 ∧ · · · ∧ l̄n |=T l̄ l̄1, . . . , l̄n ≺M l̄
T -EXPLAIN

C := {l1, · · · , ln} ∪ D

{l1, . . . , ln, l} ∈ ∆ l̄1, . . . , l̄n ∈ M l, l̄ /∈ M
PROPAGATE

M := M l

C = {l} ∪ D {l1, . . . , ln, l̄} ∈ ∆ l̄1, . . . , l̄n, l̄ ∈ M l̄1, . . . , l̄n ≺M l̄
EXPLAIN

C := {l1, . . . , ln} ∪ D

C = {l1, . . . , ln, l} lev(̄l1), . . . , lev(̄ln) ≤ i < lev(̄l)
BACKJUMP

M := M[i]l C := no

C = no {l1, . . . , ln} ∈ ∆ l̄1, . . . , l̄n ∈ M
CONflICT

C := {l1, . . . , ln}

29 / 41

Modeling the Very Lazy Theory Approach

T -CONflICT is enough to model the naive integration of SAT solvers and theory solvers
seen in the earlier EUF example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

30 / 41

Modeling the Very Lazy Theory Approach
g(a) .

= c︸ ︷︷ ︸
1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

30 / 41

Modeling the Very Lazy Theory Approach
g(a) .

= c︸ ︷︷ ︸
1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

30 / 41

Modeling the Very Lazy Theory Approach
g(a) .

= c︸ ︷︷ ︸
1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

30 / 41

Modeling the Very Lazy Theory Approach
g(a) .

= c︸ ︷︷ ︸
1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

30 / 41

Modeling the Very Lazy Theory Approach
g(a) .

= c︸ ︷︷ ︸
1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

30 / 41

Modeling the Very Lazy Theory Approach
g(a) .

= c︸ ︷︷ ︸
1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

30 / 41

Modeling the Very Lazy Theory Approach
g(a) .

= c︸ ︷︷ ︸
1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

30 / 41

Modeling the Very Lazy Theory Approach
g(a) .

= c︸ ︷︷ ︸
1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

30 / 41

Modeling the Very Lazy Theory Approach
g(a) .

= c︸ ︷︷ ︸
1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

30 / 41

Modeling the Very Lazy Theory Approach
g(a) .

= c︸ ︷︷ ︸
1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 ∨ 4 by T -CONflICT
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 2 ∨ 4 by LEARN

1 4̄ 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by RESTART
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 no by PROPAGATE+

1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄, 1̄ ∨ 2 ∨ 4, 1̄ ∨ 3̄ ∨ 4 no by LEARN

...
UNSAT by FAIL

30 / 41

A Better Lazy Approach

The very lazy approach can be improved considerably with

• an on-line SAT engine that accept new input clauses on the fly

• an incremental and explicating T -solver that can
1. check the T -satisfiability of M as it is extended and

2. identify a small T -unsatisfiable subset of M once M becomes T -unsatisfiable

31 / 41

A Better Lazy Approach

The very lazy approach can be improved considerably with

• an on-line SAT engine that accept new input clauses on the fly

• an incremental and explicating T -solver that can
1. check the T -satisfiability of M as it is extended and

2. identify a small T -unsatisfiable subset of M once M becomes T -unsatisfiable

31 / 41

A Better Lazy Approach

The very lazy approach can be improved considerably with

• an on-line SAT engine that accept new input clauses on the fly

• an incremental and explicating T -solver that can
1. check the T -satisfiability of M as it is extended and

2. identify a small T -unsatisfiable subset of M once M becomes T -unsatisfiable

31 / 41

A Better Lazy Approach

The very lazy approach can be improved considerably with

• an on-line SAT engine that accept new input clauses on the fly

• an incremental and explicating T -solver that can
1. check the T -satisfiability of M as it is extended and

2. identify a small T -unsatisfiable subset of M once M becomes T -unsatisfiable

31 / 41

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

32 / 41

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

32 / 41

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

32 / 41

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

32 / 41

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

32 / 41

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

32 / 41

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

32 / 41

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

32 / 41

A Better Lazy Approach

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ no by DECIDE
1 4̄ • 2̄ 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 2 by T -CONflICT

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by BACKJUMP
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ no by PROPAGATE
1 4̄ 2 3 1, 2̄ ∨ 3, 4̄ 1̄ ∨ 3̄ ∨ 4 by T -CONflICT
UNSAT by FAIL

32 / 41

Lazy Approach – Strategies

Ignoring RESTART (for simplicity), a common strategy is to apply the rules using the
following priorities:

1. If a clause is (propositionally) falsified by the current assignment M,
apply CONflICT

2. If M is T -unsatisfiable, apply T -CONflICT

3. Apply FAIL or EXPLAIN+LEARN+BACKJUMP as appropriate

4. Apply PROPAGATE

5. Apply DECIDE

Note: Depending on the cost of checking the T -satisfiability of M,
Step (2) can be applied with lower frequency or priority

33 / 41

Lazy Approach – Strategies

Ignoring RESTART (for simplicity), a common strategy is to apply the rules using the
following priorities:

1. If a clause is (propositionally) falsified by the current assignment M,
apply CONflICT

2. If M is T -unsatisfiable, apply T -CONflICT

3. Apply FAIL or EXPLAIN+LEARN+BACKJUMP as appropriate

4. Apply PROPAGATE

5. Apply DECIDE

Note: Depending on the cost of checking the T -satisfiability of M,
Step (2) can be applied with lower frequency or priority

33 / 41

Theory Propagation

With T -CONflICT as the only theory rule, the theory solver is used just to validate the
choices of the SAT engine

With T -PROPAGATE and T -EXPLAIN, it can also be used to guide the engine’s search

l ∈ Lits(∆) M |=T l l, l̄ /∈ M
T -PROPAGATE M := M l

C = {l} ∪ D l̄1 ∧ · · · ∧ l̄n |=T l̄ l̄1, . . . , l̄n ≺M l̄
T -EXPLAIN

C := {l1, · · · , ln} ∪ D

34 / 41

Theory Propagation

With T -CONflICT as the only theory rule, the theory solver is used just to validate the
choices of the SAT engine

With T -PROPAGATE and T -EXPLAIN, it can also be used to guide the engine’s search

l ∈ Lits(∆) M |=T l l, l̄ /∈ M
T -PROPAGATE M := M l

C = {l} ∪ D l̄1 ∧ · · · ∧ l̄n |=T l̄ l̄1, . . . , l̄n ≺M l̄
T -EXPLAIN

C := {l1, · · · , ln} ∪ D

34 / 41

Theory Propagation Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1 |=T 2)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1, 4̄ |=T 3̄)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ 2̄ ∨ 3 by CONflICT
UNSAT by FAIL

Note: T -propagation eliminates search altogether in this case!
No applications of DECIDE are needed

35 / 41

Theory Propagation Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1 |=T 2)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1, 4̄ |=T 3̄)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ 2̄ ∨ 3 by CONflICT
UNSAT by FAIL

Note: T -propagation eliminates search altogether in this case!
No applications of DECIDE are needed

35 / 41

Theory Propagation Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1 |=T 2)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1, 4̄ |=T 3̄)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ 2̄ ∨ 3 by CONflICT
UNSAT by FAIL

Note: T -propagation eliminates search altogether in this case!
No applications of DECIDE are needed

35 / 41

Theory Propagation Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1 |=T 2)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1, 4̄ |=T 3̄)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ 2̄ ∨ 3 by CONflICT
UNSAT by FAIL

Note: T -propagation eliminates search altogether in this case!
No applications of DECIDE are needed

35 / 41

Theory Propagation Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1 |=T 2)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1, 4̄ |=T 3̄)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ 2̄ ∨ 3 by CONflICT
UNSAT by FAIL

Note: T -propagation eliminates search altogether in this case!
No applications of DECIDE are needed

35 / 41

Theory Propagation Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1 |=T 2)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1, 4̄ |=T 3̄)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ 2̄ ∨ 3 by CONflICT
UNSAT by FAIL

Note: T -propagation eliminates search altogether in this case!
No applications of DECIDE are needed

35 / 41

Theory Propagation Example

g(a) .
= c︸ ︷︷ ︸

1

∧ f (g(a)) ̸ .= f (c)︸ ︷︷ ︸
2̄

∨ g(a) .
= d︸ ︷︷ ︸

3

∧ c ̸ .= d︸ ︷︷ ︸
4̄

M ∆ C rule
1, 2̄ ∨ 3, 4̄ no

1 4̄ 1, 2̄ ∨ 3, 4̄ no by PROPAGATE+

1 4̄ 2 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1 |=T 2)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ no by T -PROPAGATE (as 1, 4̄ |=T 3̄)
1 4̄ 2 3̄ 1, 2̄ ∨ 3, 4̄ 2̄ ∨ 3 by CONflICT
UNSAT by FAIL

Note: T -propagation eliminates search altogether in this case!
No applications of DECIDE are needed

35 / 41

Theory Propagation Features

• With exhaustive theory propagation, every assignment M is T -satisfiable
(since M l is T -unsatisfiable iff M |=T l̄)

• For theory propagation to be effective in practice, it needs specialized theory solvers

• For some theories, e.g., difference logic, detecting T -entailed literals is cheap and so
exhaustive theory propagation is extremely effective

• For others, e.g., the theory of equality, detecting T -entailed equalities is cheap but
detecting T -entailed disequalities is quite expensive

• If T -PROPAGATE is not applied exhaustively, T -CONflICT is needed to repair
T -unsatisfiable assignments

36 / 41

Theory Propagation Features

• With exhaustive theory propagation, every assignment M is T -satisfiable
(since M l is T -unsatisfiable iff M |=T l̄)

• For theory propagation to be effective in practice, it needs specialized theory solvers

• For some theories, e.g., difference logic, detecting T -entailed literals is cheap and so
exhaustive theory propagation is extremely effective

• For others, e.g., the theory of equality, detecting T -entailed equalities is cheap but
detecting T -entailed disequalities is quite expensive

• If T -PROPAGATE is not applied exhaustively, T -CONflICT is needed to repair
T -unsatisfiable assignments

36 / 41

Theory Propagation Features

• With exhaustive theory propagation, every assignment M is T -satisfiable
(since M l is T -unsatisfiable iff M |=T l̄)

• For theory propagation to be effective in practice, it needs specialized theory solvers

• For some theories, e.g., difference logic, detecting T -entailed literals is cheap and so
exhaustive theory propagation is extremely effective

• For others, e.g., the theory of equality, detecting T -entailed equalities is cheap but
detecting T -entailed disequalities is quite expensive

• If T -PROPAGATE is not applied exhaustively, T -CONflICT is needed to repair
T -unsatisfiable assignments

36 / 41

Theory Propagation Features

• With exhaustive theory propagation, every assignment M is T -satisfiable
(since M l is T -unsatisfiable iff M |=T l̄)

• For theory propagation to be effective in practice, it needs specialized theory solvers

• For some theories, e.g., difference logic, detecting T -entailed literals is cheap and so
exhaustive theory propagation is extremely effective

• For others, e.g., the theory of equality, detecting T -entailed equalities is cheap but
detecting T -entailed disequalities is quite expensive

• If T -PROPAGATE is not applied exhaustively, T -CONflICT is needed to repair
T -unsatisfiable assignments

36 / 41

Theory Propagation Features

• With exhaustive theory propagation, every assignment M is T -satisfiable
(since M l is T -unsatisfiable iff M |=T l̄)

• For theory propagation to be effective in practice, it needs specialized theory solvers

• For some theories, e.g., difference logic, detecting T -entailed literals is cheap and so
exhaustive theory propagation is extremely effective

• For others, e.g., the theory of equality, detecting T -entailed equalities is cheap but
detecting T -entailed disequalities is quite expensive

• If T -PROPAGATE is not applied exhaustively, T -CONflICT is needed to repair
T -unsatisfiable assignments

36 / 41

Theory Propagation Exercise

a .
= b︸ ︷︷ ︸
1

∧ a .
= c︸ ︷︷ ︸
2

∨ c .
= b︸ ︷︷ ︸
3

∧ a ̸ .= b︸ ︷︷ ︸
1̄

∨ f(a) ̸ .= f(c)︸ ︷︷ ︸
4̄

∧ c ̸ .= b︸ ︷︷ ︸
3̄

∨ g(a) .
= g(c)︸ ︷︷ ︸
5

∆0 := 1, 2 ∨ 3, 1̄ ∨ 4̄, 3̄ ∨ 5

37 / 41

Theory Propagation Exercise
Scenario 1: propagating only T -entailed equalities (no disequalities)

a .
= b︸ ︷︷ ︸
1

∧ a .
= c︸ ︷︷ ︸
2

∨ c .
= b︸ ︷︷ ︸
3

∧ a ̸ .= b︸ ︷︷ ︸
1̄

∨ f(a) ̸ .= f(c)︸ ︷︷ ︸
4̄

∧ c ̸ .= b︸ ︷︷ ︸
3̄

∨ g(a) .
= g(c)︸ ︷︷ ︸
5

∆0 := 1, 2 ∨ 3, 1̄ ∨ 4̄, 3̄ ∨ 5

37 / 41

Theory Propagation Exercise
Scenario 1: propagating only T -entailed equalities (no disequalities)

a .
= b︸ ︷︷ ︸
1

∧ a .
= c︸ ︷︷ ︸
2

∨ c .
= b︸ ︷︷ ︸
3

∧ a ̸ .= b︸ ︷︷ ︸
1̄

∨ f(a) ̸ .= f(c)︸ ︷︷ ︸
4̄

∧ c ̸ .= b︸ ︷︷ ︸
3̄

∨ g(a) .
= g(c)︸ ︷︷ ︸
5

∆0 := 1, 2 ∨ 3, 1̄ ∨ 4̄, 3̄ ∨ 5

M ∆ C rule
∆0 no

1 4̄ ∆0 no by PROPAGATE+

1 4̄ • 2 ∆0 no by DECIDE
1 4̄ • 2 ∆0 2̄ ∨ 4 by T -CONflICT (as 2, 4̄ |=T ⊥)

1 4̄ 2̄ ∆0 no by BACKJUMP
1 4̄ 2̄ 3 ∆0 no by PROPAGATE
1 4̄ 2̄ 3 ∆0 2̄ ∨ 4 by T -CONflICT (as 1, 3̄, 4̄ |=T ⊥)
UNSAT by FAIL

37 / 41

Theory Propagation Exercise
Scenario 2: propagating T -entailed equalities and disequalities

a .
= b︸ ︷︷ ︸
1

∧ a .
= c︸ ︷︷ ︸
2

∨ c .
= b︸ ︷︷ ︸
3

∧ a ̸ .= b︸ ︷︷ ︸
1̄

∨ f(a) ̸ .= f(c)︸ ︷︷ ︸
4̄

∧ c ̸ .= b︸ ︷︷ ︸
3̄

∨ g(a) .
= g(c)︸ ︷︷ ︸
5

∆0 := 1, 2 ∨ 3, 1̄ ∨ 4̄, 3̄ ∨ 5

37 / 41

Theory Propagation Exercise
Scenario 2: propagating T -entailed equalities and disequalities

a .
= b︸ ︷︷ ︸
1

∧ a .
= c︸ ︷︷ ︸
2

∨ c .
= b︸ ︷︷ ︸
3

∧ a ̸ .= b︸ ︷︷ ︸
1̄

∨ f(a) ̸ .= f(c)︸ ︷︷ ︸
4̄

∧ c ̸ .= b︸ ︷︷ ︸
3̄

∨ g(a) .
= g(c)︸ ︷︷ ︸
5

∆0 := 1, 2 ∨ 3, 1̄ ∨ 4̄, 3̄ ∨ 5

M ∆ C rule
∆0 no

1 4̄ ∆0 no by PROPAGATE+

1 4̄ 2̄ ∆0 no by T -PROPAGATE (as 1, 4̄ |=T 2̄)
1 4̄ 2̄ 3 ∆0 no by PROPAGATE
1 4̄ 2̄ 3 ∆0 1̄ ∨ 3̄ ∨ 4 by T -CONflICT (as 1, 3, 4̄ |=T ⊥)
UNSAT by FAIL

37 / 41

Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the proof system with
rules:

(1) PROPAGATE, DECIDE, CONflICT, EXPLAIN, BACKJUMP, FAIL

(2) T -CONflICT, T -PROPAGATE, T -EXPLAIN

(3) LEARN, FORGET, RESTART

Basic CDCL Modulo Theories def
= (1) + (2)

CDCL Modulo Theories def
= (1) + (2) + (3)

38 / 41

Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the proof system with
rules:

(1) PROPAGATE, DECIDE, CONflICT, EXPLAIN, BACKJUMP, FAIL

(2) T -CONflICT, T -PROPAGATE, T -EXPLAIN

(3) LEARN, FORGET, RESTART

Basic CDCL Modulo Theories def
= (1) + (2)

CDCL Modulo Theories def
= (1) + (2) + (3)

38 / 41

Correctness
Updated terminology:

Irreducible state: state to which no Basic CDCL Modulo Theories rules apply
Execution: a (single-branch) derivation tree starting with M = ∅ and C = no
Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)
Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) RESTART
is applied with increased periodicity is finite.

39 / 41

Correctness
Updated terminology:

Irreducible state: state to which no Basic CDCL Modulo Theories rules apply
Execution: a (single-branch) derivation tree starting with M = ∅ and C = no
Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)
Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) RESTART
is applied with increased periodicity is finite.

39 / 41

Correctness
Updated terminology:

Irreducible state: state to which no Basic CDCL Modulo Theories rules apply
Execution: a (single-branch) derivation tree starting with M = ∅ and C = no
Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)
Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) RESTART
is applied with increased periodicity is finite.

Lemma 3
Every exhausted execution ends with either C = no or UNSAT.

39 / 41

Correctness
Updated terminology:

Irreducible state: state to which no Basic CDCL Modulo Theories rules apply
Execution: a (single-branch) derivation tree starting with M = ∅ and C = no
Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)
Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) RESTART
is applied with increased periodicity is finite.

Theorem 3 (Refutation Soundness)
For every exhausted execution starting with ∆ = ∆0 and ending with UNSAT, the clause set ∆0 is
T -unsatisfiable.

39 / 41

Correctness
Updated terminology:

Irreducible state: state to which no Basic CDCL Modulo Theories rules apply
Execution: a (single-branch) derivation tree starting with M = ∅ and C = no
Exhausted execution: execution ending in an irreducible state

Theorem 2 (Strong Termination)
Every execution in which (i) LEARN/FORGET are applied only finitely many times and (ii) RESTART
is applied with increased periodicity is finite.

Theorem 3 (Refutation Soundness)
For every exhausted execution starting with ∆ = ∆0 and ending with UNSAT, the clause set ∆0 is
T -unsatisfiable.

Theorem 4 (Refutation Completeness)
For every exhausted execution starting with ∆ = ∆0 and ending with C = no, the clause set ∆0
is T -satisfiable; specifically, M is T -satisfiable and M |=p ∆0.

39 / 41

CDCL(T) Architecture

The approach formalized so far can be implemented with a simple architecture
originally named DPLL(T) but currently known as CDCL(T)

CDCL(T) = CDCL(X) engine + T -solver

40 / 41

CDCL(T) Architecture

The approach formalized so far can be implemented with a simple architecture
originally named DPLL(T) but currently known as CDCL(T)

CDCL(T) = CDCL(X) engine + T -solver

CDCL(X):

• Very similar to a SAT solver, enumerates Boolean models
• Not allowed: pure literal rule (and other SAT specific optimizations)
• Required: incremental addition of clauses
• Desirable: partial model detection

40 / 41

CDCL(T) Architecture

The approach formalized so far can be implemented with a simple architecture
originally named DPLL(T) but currently known as CDCL(T)

CDCL(T) = CDCL(X) engine + T -solver

T -solver:

• Checks the T -satisfiability of conjunctions of literals
• Computes theory propagations
• Produces explanations of T -unsatisfiability/propagation
• Must be incremental and backtrackable

40 / 41

Typical SMT solver architecture

41 / 41

Typical SMT solver architecture

41 / 41

SAT Solver
• Only sees Boolean skeleton of problem
• Builds partial model by assigning truth values to

literals
• Sends these literals to the core as assertions

Typical SMT solver architecture

41 / 41

Core
• Sends each assertion to the

appropriate theory
• Sends deduced literals to other

theories/SAT solver
• Handles theory combination

Typical SMT solver architecture

41 / 41

Theory Solvers
• Check T -satisfiability of sets of

theory literals
• Incremental
• Backtrackable
• Conflict Generation
• Theory Propagation

