
Sovling The Theory of Equality and Uninterpreted Functions
(EUF)

Bruno Andreotti

Universidade Federal de Minas Gerais - UFMG

2024–10–23

1 / 30



Review: the EUF theory

Last week, we briefly talked about the theory of equality with uninterpreted
functions (EUF)

Formally, the axioms of this theory are built into the equational first-order logic we
use in SMT

which is why it is sometimes called the “empty” theory

f (f (a)) 6= b ∧ a = b ∧ a = f (a)

2 / 30



Review: the EUF theory

Last week, we briefly talked about the theory of equality with uninterpreted
functions (EUF)

Formally, the axioms of this theory are built into the equational first-order logic we
use in SMT

which is why it is sometimes called the “empty” theory

f (f (a)) 6= b ∧ a = b ∧ a = f (a)

2 / 30



Review: the EUF theory

Reflexivity: ∀a. a = a

Symmetry: ∀a, b. (a = b) ⇔ (b = a)

Transitivity: ∀a, b, c. (a = b) ∧ (b = c) ⇒ (a = c)

Congruence: ∀a, b, f . (a = b) ⇒ (f (a) = f (b))

3 / 30



Review: the EUF theory

Reflexivity: ∀a. a = a

Symmetry: ∀a, b. (a = b) ⇔ (b = a)

Transitivity: ∀a, b, c. (a = b) ∧ (b = c) ⇒ (a = c)

Congruence: ∀a, b, f . (a = b) ⇒ (f (a) = f (b))

3 / 30



Formal definition of the EUF problem

When solving an SMT problem that involves the EUF theory, the solver will
consider all equality terms as atoms, and search for a model

From the perspective of the theory solver, this model will be a series of equalities
or disequalities, and we must determine if they are consistent with the EUF
axioms or not

This is equivalent to the problem of finding a “congruence closure” of the
equalities, which is the minimal equivalence relation that contains the given
equalities, while also respecting the axioms of reflexivity, symmetry, transitivity
and congruence.

4 / 30



Formal definition of the EUF problem

When solving an SMT problem that involves the EUF theory, the solver will
consider all equality terms as atoms, and search for a model

From the perspective of the theory solver, this model will be a series of equalities
or disequalities, and we must determine if they are consistent with the EUF
axioms or not

This is equivalent to the problem of finding a “congruence closure” of the
equalities, which is the minimal equivalence relation that contains the given
equalities, while also respecting the axioms of reflexivity, symmetry, transitivity
and congruence.

4 / 30



Formal definition of the EUF problem

Therefore, a possible algorithm is to first compute the set of equivalence classes
induced by the given set of equalities, and then check if any of the disequalities is
between two terms of the same equivalence class

This will be the general shape of the algorithm I will describe today, but first we
need to do some pre-processing!

5 / 30



Formal definition of the EUF problem

Therefore, a possible algorithm is to first compute the set of equivalence classes
induced by the given set of equalities, and then check if any of the disequalities is
between two terms of the same equivalence class

This will be the general shape of the algorithm I will describe today, but first we
need to do some pre-processing!

5 / 30



Currying

It’s complicated to deal with functions that can have any number of arguments

Instead, we transfrom these terms into their Curry Form

A function f : (X × Y ) → Z becomes f ′ : X → (Y → Z)

...and an application term f (x, y) becomes ((f ′ x) y)

6 / 30



Currying

It’s complicated to deal with functions that can have any number of arguments

Instead, we transfrom these terms into their Curry Form

A function f : (X × Y ) → Z becomes f ′ : X → (Y → Z)
...and an application term f (x, y) becomes ((f ′ x) y)

6 / 30



Currying

We are going to introduce a new “apply” function symbol, denoted “·”, that takes
two arguments

We represent every function term by applying “·” to the function and the
argument:

f (x) 7→ ·(f , x)
f (x1, . . . , xn) 7→ ·(. . . · (·(f , x1), x2), . . . xn)

x 7→ x

7 / 30



Currying

We are going to introduce a new “apply” function symbol, denoted “·”, that takes
two arguments

We represent every function term by applying “·” to the function and the
argument:

f (x) 7→ ·(f , x)
f (x1, . . . , xn) 7→ ·(. . . · (·(f , x1), x2), . . . xn)

x 7→ x

7 / 30



Currying: Example

f (x, g(y), z)

f

x g z

y

⇒

·(·(·(f , x), ·(g, y)), z)

•

f x

•

•

g y

•

z

8 / 30



Computing congruence closure

At the start, each term will be in its own equivalence class

We will compute the congruence closure by iterating over the input equalities, and
merging the equivalence classes as needed

After processing all equalities, we will have constructed the congruence closure
induced by them

9 / 30



Computing congruence closure

pending: The list of input equalities that we have not yet processed

representative(t) or t′: For each term t, this stores a term r which is a unique
representative of the equivalence class of t. This is also denoted as t′. At the
start, t′ = t.

class(r): For each representative, stores a list with all the terms in its class.

lookup(a, b): For each term ·(a, b), lookup(a′, b′) will a term c such that c
is equivalent to ·(a, b), if it exists. Otherwise, lookup returns null.

useList(r): For each representative r , this stores a list of all terms ·(x, y) where
x ′ = r or y′ = r

10 / 30



Computing congruence closure

pending: The list of input equalities that we have not yet processed

representative(t) or t′: For each term t, this stores a term r which is a unique
representative of the equivalence class of t. This is also denoted as t′. At the
start, t′ = t.

class(r): For each representative, stores a list with all the terms in its class.

lookup(a, b): For each term ·(a, b), lookup(a′, b′) will a term c such that c
is equivalent to ·(a, b), if it exists. Otherwise, lookup returns null.

useList(r): For each representative r , this stores a list of all terms ·(x, y) where
x ′ = r or y′ = r

10 / 30



Computing congruence closure

function congruence_closure():
while pending 6= ∅:

take a = b from pending
if a′ 6= b′:

merge(a, b)

// Assume class(a′) < class(b′)
function merge(a, b):

for each c in class(a′):
set the representative of c to b′
class(b′) += c

for each e = ·(c, d) in useList(a′):
let f = lookup(c′, d ′)
if f 6= null and f ′ 6= e′:

pending += (e′ = f ′)
lookup(c′, d ′) = e′
useList(b′) += ·(c, d))

11 / 30



Computing congruence closure

function congruence_closure():
while pending 6= ∅:

take a = b from pending
if a′ 6= b′:

merge(a, b)

// Assume class(a′) < class(b′)
function merge(a, b):

for each c in class(a′):
set the representative of c to b′
class(b′) += c

for each e = ·(c, d) in useList(a′):
let f = lookup(c′, d ′)
if f 6= null and f ′ 6= e′:

pending += (e′ = f ′)
lookup(c′, d ′) = e′
useList(b′) += ·(c, d))

11 / 30



Complexity analysis

The lookup function can be implemented using a hash table or array, so accessing
it is O(1)

Each term can only change representative up to O(log n) times1, so the total time
spent updating the representative table is O(log n)

Similarly, each input equation ·(c, d) = e can only change useLists O(log n)
times.

In total, the complexity to construct the congruence closure is O(n log n)

1note that the class size always at least doubles after a merge
12 / 30



Complexity analysis

We must also consider the complexity of checking if two terms are congruent

To do this, we just compute the representatives of each term, and compare them.
Since the depth of the tree is bounded O(log n), this takes O(log n) time.

In total, performing the queries to see if the at most n input disequalities are
consistent takes O(n log n) time.

13 / 30



Complexity analysis

As such, the total complexity of this algorithm is O(n log n).

Notably, this is very cheap compared to most other theory solvers

The best known algorithms for many common theories are exponential (e.g.
quantifier-free linear integer arithmetic), doubly-exponential (e.g. non-linear real
arithmetic) or even undecidable (e.g. non-linear integer arithmetic)!

14 / 30



Some historical context

15 / 30



Some historical context

15 / 30



Proofs and explanations

So far, we have described an algorithm that can answer “yes” or “no” to whether
two terms are equivalent under congruence

However, in some cases this boolean answer might not be good enough

16 / 30



Proofs and explanations

For example, consider the case where the set of input equalities is:

a = f (b), b = c, f (c) 6= a, d1 = e1, d2 = e2, . . . , dn = en

If we simply tell the SAT solver that this model is inconsistent but don’t give any
more information, it will create the conflict clause:

a 6= f (b) ∨ b 6= c ∨ f (c) = a ∨ d1 6= e1 ∨ d2 6= e2 ∨ . . . ∨ dn 6= en

In this case, the SAT solver might keep producing very similar inconsistent models

17 / 30



Proofs and explanations

For example, consider the case where the set of input equalities is:

a = f (b), b = c, f (c) 6= a, d1 = e1, d2 = e2, . . . , dn = en

If we simply tell the SAT solver that this model is inconsistent but don’t give any
more information, it will create the conflict clause:

a 6= f (b) ∨ b 6= c ∨ f (c) = a ∨ d1 6= e1 ∨ d2 6= e2 ∨ . . . ∨ dn 6= en

In this case, the SAT solver might keep producing very similar inconsistent models

17 / 30



Proofs and explanations

For example, consider the case where the set of input equalities is:

a = f (b), b = c, f (c) 6= a, d1 = e1, d2 = e2, . . . , dn = en

If we simply tell the SAT solver that this model is inconsistent but don’t give any
more information, it will create the conflict clause:

a 6= f (b) ∨ b 6= c ∨ f (c) = a ∨ d1 6= e1 ∨ d2 6= e2 ∨ . . . ∨ dn 6= en

In this case, the SAT solver might keep producing very similar inconsistent models

17 / 30



Proofs and explanations

Instead, it would be nice if we could convey to the solver that only the first three
atoms are enough to form an inconsistent model

To do this, we will modify our algorithm so that, when we determine that two
terms are equivalent, we can also produce an explanation of their equivalence

18 / 30



Proofs and explanations

Formally, an explanation is a minimal2 set of equalities that is sufficient to make
two terms equivalent

In the example, the explanation for f (c) ≡ a is {a = f (b), b = c}

From this, we create the conflict clause

a 6= f (b) ∨ b 6= c ∨ f (c) = a

which is much more useful

2as in, if you remove any equality from it, it doesn’t work anymore
19 / 30



Proofs and explanations

Besides their use as conflict clauses, explanations can also be used to construct
proofs of unsatisfiability:

a = f (b)
b = c cong.

f (b) = f (c)
trans.a = f (c) symm.

f (c) = a

These are crucial when you want to produce a proof of the unsatisfiability of the
formula as a whole

20 / 30



Proofs and explanations

Besides their use as conflict clauses, explanations can also be used to construct
proofs of unsatisfiability:

a = f (b)
b = c cong.

f (b) = f (c)
trans.a = f (c) symm.

f (c) = a

These are crucial when you want to produce a proof of the unsatisfiability of the
formula as a whole

20 / 30



Proof producing congruence closure

We will construct a graph where the nodes are terms, and the edges are the class
merges that were done

1 a = b
2 c = a
3 d = e
4 f = e
5 g = c
6 c = f

a

b

e

c f d

g

21 / 30



Proof producing congruence closure

1 a = b
2 c = a
3 d = e
4 f = e
5 g = c
6 c = f

a e

b c f d

g

22 / 30



Proof producing congruence closure

1 a = b
2 c = a
3 d = e
4 f = e
5 g = c
6 c = f

a

c

e

b f d

g

23 / 30



Proof producing congruence closure

function get_explanation(start, end):
let explanation = []
let lca = find_lowest_common_ancestor(start, end)
explanation += explain_along_path(start, lca)
explanation += explain_along_path(end, lca)
return explanation

24 / 30



Proof producing congruence closure

function explain_along_path(lower, upper):
let explanation = []
let a = lower
while a != upper:

let b = parent(a)
if the edge a → b is f (a1, a2) = f (b1, b2):

// the edge is a congruence edge
explanation += get_explanation(a1, b1)
explanation += get_explanation(a2, b2)

else:
// the edge is a single input equality
explanation += (a = b)

return explanation

25 / 30



Proof producing congruence closure

Here, we’ve only shown the version of the algorithm that produces explanations

However, it is not much more complicated to instrument it to also produce
structured proofs

each input equality you add to the explanation is an assumption to the proof
each congruence edge you visit becomes a congruence step
and we have to add transitivity steps to connect the path

26 / 30



Complexity analysis: merge

With this modified algorithm, we must do some extra work when merging
equivalence classes, as we may have to reorient edges up to the root of one of the
merged classes.

Since the proof graph is a forest, we have at most n − 1 edges, and each edge can
be reoriented at most O(log n) times.

So, the total time spent doing this extra work is O(n log n)

27 / 30



Complexity analysis: explain

The way we implemented get_explanation is not the most efficient, as it may
try to explain the same terms multiple times

Solving this limitation is tricky, but can be done with the use of an additional
union-find data structure

With this optimization, the complexity of producing the explanation can be
O(k α(k, k)) (where k is the size of the final proof), which is bound by O(n log n)

28 / 30



Thanks!

Reminder: there will be no class on Monday, October 28th.
See you all next Wednesday!

29 / 30



[1] Robert Nieuwenhuis and Albert Oliveras. “Congruence Closure with Integer
Offsets”. In: Logic for Programming, Artificial Intelligence, and Reasoning. Ed. by
Moshe Y. Vardi and Andrei Voronkov. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 78–90. isbn: 978-3-540-39813-4.

[2] Robert Nieuwenhuis and Albert Oliveras. “Proof-Producing Congruence Closure”.
In: Term Rewriting and Applications. Ed. by Jürgen Giesl. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 453–468. isbn: 978-3-540-32033-3.

[3] Andreas Fellner, Pascal Fontaine, and Bruno Woltzenlogel Paleo.
“NP-completeness of small conflict set generation for congruence closure”. In:
Form. Methods Syst. Des. 51.3 (Dec. 2017), pp. 533–544. issn: 0925-9856. doi:
10.1007/s10703-017-0283-x. url:
https://doi.org/10.1007/s10703-017-0283-x.

[4] Oliver Flatt et al. “Small Proofs from Congruence Closure”. In: 2022 Formal
Methods in Computer-Aided Design (FMCAD). 2022, pp. 75–83. doi:
10.34727/2022/isbn.978-3-85448-053-2_13.

30 / 30

https://doi.org/10.1007/s10703-017-0283-x
https://doi.org/10.1007/s10703-017-0283-x
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_13

	References

