
Hints to Speci�ersJeannette M. WingMay 22, 1995CMU-CS-95-118rSchool of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213This paper is derived from the paper \Teaching Mathematics to Software Engineers," whichwill appear in the Proceedings of the Fourth International Conference on Algebraic Methodologyand Software Technology '95. The AMAST paper is the basis of an invited talk for AMAST'sEducation Day, July 3, 1995, in Montreal, Canada.AbstractI present a list of hints for writing speci�cations. I address high-level issues like learning to abstractand low-level issues like getting the details of logical expressions right. This paper should be ofinterest not only to students of formal methods but also to their teachers.This research is sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Com-mand, USAF, and the Advanced Research Projects Agency (ARPA) under grant number F33615-93-1-1330. Viewsand conclusions contained in this document are those of the authors and should not be interpreted as necessarilyrepresenting o�cial policies or endorsements, either expressed or implied, of Wright Laboratory or the United StatesGovernment.



Keywords: formal methods, formal speci�cation, software engineering, education, discretemathematics, mathematical logic, algebraic speci�cations, Z, Larch



1. MotivationOver the years I have been accumulating hints that I give students in response to common problemsand recurrent questions that arise as they try their hand at writing speci�cations. I often remindmyself of these hints when I write speci�cations too. I've broadly categorized them along thefollowing dimensions:� Figuring out why you are going through this speci�cation e�ort (Section 2). What do youhope to get out of using formalism?� Figuring out what of the system you want to specify (Section 3).� Figuring out how to specify (Section 4). The most important hurdle to overcome is learningto abstract. I also give speci�c suggestions on how to make incremental progress when writinga speci�cation.� Figuring out what to write down (Section 5). Learn and abide by a formal method's set ofconventions but do not feel unduly constrained by them. Also, we all make logical errorssometimes; I point out some common troublespots in getting the details of a speci�cationright.My hints are targeted for the novice speci�er, but experts, such as teachers of formal methods,may also �nd them useful.I will illustrate my points with examples, usually in Z or Larch. Many actually make more thanone point.2. Why Specify?You should �rst ask yourself this question, \Why specify?" You might choose to specify because youwant additional documentation of your system's interfaces, you want a more abstract descriptionof your system design, or you want to perform some formal analysis of your system. What youwrite should be determined by what it is you want to do with your speci�cation.You should then ask yourself \Why formally specify?" Your answer determines what is to beformalized, what formal method to use, and what bene�ts you expect from a formal speci�cationnot attainable from an informal one. When I have asked this question of system builders, here arethe kinds of responses I have heard:� Showing that a property holds globally of the entire system.{ I want to characterize the \correctness condition" I can promise the user of my system.{ I want to show this property is really a system invariant.{ I want to show my system meets some high-level design criteria.� Error handling{ I want to specify what happens if an error occurs.1



{ I want to specify the right thing happens if an error occurs.{ I want to make sure this error never occurs.� Completeness{ I want to make sure that I've covered all the cases, including error cases, for this protocol.{ I'd like to know that this language I've designed is computationally complete.� Specifying interfaces.{ I'd like to de�ne a hierarchy of C++ classes.{ I'd like a more formal description of this system's user interface.� Getting a handle on complexity.{ The design is getting too complicated. I can't �t it all in my head. I need a way tothink about it in smaller pieces.� Change control.{ Every time I change one piece of code I need to know what other pieces are a�ected. I'dlike to know where else to look without looking at all modules, without looking at allthe source code.Judicious use of formalism can help address all these problems to varying levels of detail andrigor.3. What to Specify?Formal methods are not to the point where an entire large, software system can be completelyspeci�ed. You may be able to specify one aspect of it, e.g., its functionality or its real-time behavior;you may be able to specify many aspects of a part of it, e.g., specifying both functionality andreal-time behavior of its safety-critical part. In practice, you may only care to specify one aspectof a part of a system anyway.In writing a speci�cation, you should decide whether it is describing required or permitted be-havior. Must or may? Since a speci�cation can be viewed as an abstraction of many possible,legitimate implementations, you might most naturally associate a speci�cation with describingpermitted behavior. An implementation may have any of the behaviors permitted by the speci�-cation, but the implementor is not required to realize all. For example, a nondeterministic chooseoperation speci�ed for sets will have a deterministic implementation. However, the expression\software system requirements" suggests that a customer may in fact require certain behavior. Forexample, in specifying an abstract data type's interface, the assumption is that all, not some propersubset, of the operations listed must be implemented.Once it is clear what you want from the speci�cation process, you can turn to determiningexactly what should be formalized. 2



In increasing order of level of detail, you might want to formalize a global correctness conditionfor the system, one or more system invariants, the observable behavior of a system, or propertiesof entities in a system.Correctness ConditionsYou usually have some informal notion of a global correctness condition that you expect yoursystem to maintain. It might be something as standard as serializability, cache coherence, ordeadlock freedom. Or, it might be very speci�c to the protocol or system at hand. If it is standard,then very likely someone else has developed a formal model for characterizing a system and a logicwithin which the correctness condition can be formally stated and proved. E.g., serializability hasbeen thoroughly studied by the database community from all angles, theoretical to practical. Ifyour correctness condition can be cast in terms of a well-known theory, it pays to reuse that workand not invent from scratch.If it is not standard then an informal statement of the correctness condition should drive theformalization of the system model and expression of the correctness condition. For example, inwork by Mummert et al. [14], the authors started with this informal statement of cache coherencefor a distributed �le system:If a client believes that a cached �le is valid then the server that is the authorityon that �le had better believe that the �le is valid.They developed a system model (a state machine model) and logic (based on the logic ofauthentication [5]) that enabled them to turn the informal statement into the following formalstatement:For all clients C , servers S , and objects d for which S is the repository,if C believes valid(dC ) then S believes valid(dC ):where clients, servers, objects, repository, believes and valid are formally de�ned concepts. Thepoint is that the formal statement does not read too di�erently from the informal one.Keep in mind this rule-of-thumb when formalizing from an informal statement: Let the thingsyou want to describe formally drive the description of the formal model. There is a tendency tolet the formal method drive the description of the formal model; you end up specifying what youcan easily specify using that method. That is �ne as far as it goes, but if there are things youcannot say or that are awkward to express using that method, you should not feel bound by themethod. Invent your own syntax (to be de�ned later), add auxiliary de�nitions, or search for acomplementary method.The process of constructing a formal model of a system and formally characterizing the intendedcorrectness condition can lead to surprises. More than once I have seen Ph.D. students startformalizing the systems that they were building and then have to back o� from their expected anddesired correctness condition. They end up realizing that it was too strong, not always guaranteed(e.g., not guaranteed for some failure case or for a \fast-path" case), or only locally true (holdsfor a system component but not the entire system). Correctness conditions for distributed systemsare likely to be weaker than expected or desired because of the presence of failures (nodes or3



links crashing) and transmission delays; the time to recover from failures and the time to transmitmessages introduce \windows of vulnerability" during which the correctness condition cannot beguaranteed.InvariantsThe most common way to characterize certain kinds of correctness conditions is as a stateinvariant. An invariant is a property that does not change as the system goes from state to state.Remember also:� An invariant is just a predicate. Given an appropriate assertion language, it is usually not abig deal to express an invariant formally.� \True" is an invariant of any system. It's the weakest invariant and hence not a very usefulone; you probably want to say something more interesting about your system. If \true" endsup being your strongest invariant, revisit your system design.� An invariant can serve multiple purposes. It is usually used to pare down a state space tothe states of interest. For example, it can be used to characterize the set of reachable statesor the set of acceptable/legal (\good") states. (These two sets are not always the same. Forexample, you might want the set of acceptable states to be a subset of the set of reachableones.) Representation invariants are used to de�ne the domain of an abstraction function,used when showing that one system \implements" another [11].� Di�erent formal methods treat invariants di�erently. (See Implicit versus Explicit in Section5.1 for an elaboration of this point.) Make sure you understand invariants in the context ofthe formal method you are using.� Hard questioning of system invariants can lead to radically new designs.To illustrate the last point, consider this example from the garbage collection community. Oneclass of copying garbage collection algorithms relies on dividing the heap into two semi-spaces,to-space and from-space; in one phase of these algorithms, objects are copied from from-space toto-space [2]. Traditional copying garbage collection algorithms obey a \to-space invariant": Theuser accesses objects only in to-space. Nettles and O'Toole observed that breaking this invariantand maintaining an alternative \from-space invariant" (the user accesses objects only in from-space) leads to simpler designs that are much easier to implement, analyze, and measure [15]. Thisobservation led to a brand new class of garbage collection algorithms.Observable BehaviorState invariants are a good way to characterize desired system properties. Formalizing statetransitions will allow you to prove that they are maintained. When you specify state transitions,what you are specifying is the behavior of the system as it interacts with its environment, i.e., thesystem's observable behavior.It might seem obvious that what you want to specify is the observable behavior of a system,but sometimes when you are buried in the details of the task of specifying, you forget the biggerpicture. Suppose you take a state machine approach to modeling your system. Here is a generalapproach to specifying observable behavior: 4



1. Identify the level of abstraction (see Section 4.1) at which you are specifying the system.This level determines the interface boundary that you are specifying; it determines what isor is not observable. For example, a bus error at the hardware level is not expected to bean observable event in the execution of an text formatter like Word, but core dumped iscertainly an observable event when using a text editor like emacs.2. Characterize the observable entities in a state at that given level of abstraction. These entitiesare sometimes called a system's state variables or objects. This step forces you to identify therelevant abstract types of your system (See the section on Properties of State Entities below.)3. Characterize a set of initial states, and if appropriate, a set of �nal states.4. Identify the operations that can access or modify the observable entities. These de�ne yourstate transitions.5. For each operation, characterize its observable e�ect on the observable state entities. Forexample, use Z schemas, Larch interfaces, or VDM pre/post-conditions.Observable behavior should include any change in state that is observable to the user. If youare specifying an operation, then the kinds of observable state changes include changes in valueto state entities, observable changes in the store (new entities that appear and old entities thatdisappear), results returned by the operation, and signaled exceptions or errors.Another way to think about observable behavior is to think about observable equivalence [13, 10].Ask \Can I distinguish between these two things?" where \things" might be states, individualentities in a state, traces of a process, or behavior sets of a process, depending on what you arespecifying. If the answer is \yes," then there must be way to tell them apart (perhaps by usingunique names or perhaps by de�ning an equal operation); if \no," then there must not be any wayfor the observer to tell them apart.Properties of State EntitiesThe most important property to express of any entity in a system is its type. This statementis true regardless of the �ne distinctions between the di�erent type systems that di�erent formalmethods and speci�cation (and programming) languages have. Since for a speci�cation we are notconcerned about compile-time or run-time costs of checking types, there is never a cost incurred indocumenting in a speci�cation an entity's type.Since a type can be viewed as an abbreviation for a little theory, declaring an entity's type is asuccinct way of associating a possibly in�nite set of properties with the entity in one or two words.A truly powerful abstraction device!For entities that are \structured" objects (e.g., an object that is a collection of other objects),when determining its type, the kinds of distinguishing properties include:� Ordering. Are elements ordered or unordered? If ordering matters, is the order partial ortotal? Are elements removed FIFO, LIFO, or by priority?� Duplicates. Are duplicates allowed? 5



� Boundedness. Is the object bounded in size or unbounded? Can the bound change or it is�xed at creation time?� Associative access. Are elements retrieved by an index or key? Is the type of the indexbuilt-in (e.g., as for sequences and arrays) or user-de�nable (e.g., as for symbol tables andhash tables)?� Shape. Is the structure of the object linear, hierarchical, acyclic, n-dimensional, or arbitrarilycomplex (e.g., graphs, forests)?For entities that are relations, the kinds of distinguishing properties include whether the relationis a function (many-to-one), partial, �nite, de�ned for only a �nite domain, surjective, injective,bijective, and any (meaningful) combination of these.Finally, algebraic properties help characterize any relational entity or any function or relationde�ned on a structured entity. The standard algebraic properties include: idempotency, reexivity,symmetry, transitivity, commutativity, associativity, distributivity, existence of an identity element,and existence of an inverse relation or function. Algebras are well-known mathematical models forabstract data types and for processes [8, 13, 1]. For example, this algebraic equation characterizesthe idempotency of inserting the same element into a set multiple times:insert(insert(s; e); e) = insert(s; e)and this characterizes insert's commutativity property:insert(insert(s; e1); e2) = insert(insert(s; e2); e1)It also makes sense to ask about whether algebraic properties hold for operations on processes. Forexample, for CSP processes, parallel composition is both commutative and associative:P k Q = Q k PP k (Q k R) = (P k Q) k R4. How to Specify?Given that you understand why you are specifying and what it is you want to specify, in what waysshould you try to think about the system so that you can begin to specify and then make progressin writing your speci�cation? The fundamental techniques are abstraction and decomposition. Inspecifying large, complex systems, abstraction is useful for focusing your attention to one level ofdetail at a time; decomposition, for one small piece of the system (at a given abstraction level) ata time. Both enable local reasoning.4.1. Learn to Abstract: Try Not to Think Like a ProgrammerThe skill that people �nd the most di�cult to acquire is the ability to abstract. One aspect oflearning to abstract is being able to think at a level higher than programmers are used to.6



Try to think de�nitionally not operationally.A student said the following to me when trying to explain his system design:If you do this and then that and then this and then that, you end up in a good state.But if you do this and then that and then this, you end up in a bad state.When specifying concurrent systems, rather than thinking of what characterizes all good states,people often think about whether a particular sequence of operations leads to a good or bad state.Taking this operational approach means ending up trying to enumerate all possible interleavings;this enumeration process quickly gets out of control, which is typically when a student will comeknocking at my door for help. This problem is related to understanding invariants (see Invariantsin Section 3). Invariably, the very �rst thing I need to teach students when I work with themone-on-one is what an invariant is.Try not to think computationally.1When writing speci�cations, abstraction is intellectually liberating because you are not boundto think in terms of computers and their computations.The following predicates = s 0 � heimight appear in the post-condition of the speci�cation of a remove operation on sequences. Here,s stands for the sequence's initial value; s 0, its �nal value; e , the element removed and returned.You most naturally might read \=" as assignment (especially if you are a C programmer) and notas a predicate symbol used here to relate values of objects in two di�erent states. You may needto stare at such predicates for a while before realizing the assertional nature (and power) of logic.Try constructing theories, not just models.Building models is an abstraction process; but de�ning a theory takes a di�erent kind of ab-straction skill. When you construct a model of a system in terms of mathematical structures likesets, sequences, and relations, you get all properties of sets and relations \for free." This hasthe advantage that you do not have to spell them out every time you specify a system, but thedisadvantage that some of those properties are irrelevant to your system. Thus, in a model-basedconstructive approach, you also need to provide a way to say which properties about the standardmathematical structures may be irrelevant. (You might strip away of properties by using invari-ants.) For example, you might specify a stack in terms of a sequence, where the top of the stackcorresponds to one end of the sequence. Then, you need not only to state which end of the sequenceserves as the top of the stack, but also to eliminate some sequence properties, e.g., being able toindex into a sequence or concatenate two sequences, because they have no relevance for stacks.By contrast, in a theory-based approach you state explicitly exactly what properties you wantyour system to have. Any model that satis�es that theory is deemed to be acceptable. For example,the essence of stacks is captured by the well-known equations:1Another way of saying the same thing as above. 7



pop(push(s,e)) = stop(push(s,e)) = eSequences, or any other data structure, do not enter the picture at all.Like many, you may �nd methods like Z and VDM appealing because they encourage a model-based rather than theory-based approach to speci�cation. You can build up good intuition aboutyour system if you have a model in hand. However, to practice learning how to abstract, try writingalgebraic or axiomatic assertions about the model.4.2. How To Proceed: IncrementallyAt any given level of abstraction, we ignore some detail about the system below. You might feelanxious to specify everything for fear of being \incomplete." Learning to abstract means learningwhen it is okay to leave something unspeci�ed. This aspect of the abstraction process also allowsincremental speci�cation. In general, it is better to specify something partially than not at all.Here are four common and important examples of incremental abstraction techniques: (1) �rstassume something is true of the input argument and capture this assumption in a pre-condition,then weaken the pre-condition; (2) �rst handle the normal case, then the failure case; (3) �rstignore the fact that ordering (or no duplicates, etc.) matters, then strengthen the post-condition;(4) �rst assume the operation is atomic, then break it into smaller atomic steps. Let's look in turnat each of these examples in their generality and in more detail.Use pre-conditions.Putting your \programmer's" cap on, think of pre-conditions in the context of procedure call.A pre-condition serves two purposes: an obligation on the caller to establish before calling theprocedure and an assumption the implementor can make when coding the procedure.More generally, pre-conditions are a way of specifying assumptions about the environment of asystem component. Such assumptions can and should be spelled out and written down explicitly.By doing so, you can specify and reason about a piece of the system without having to think aboutthe entire system all at once. Thus pre-conditions assist in partial speci�cation, incremental design,and local reasoning|all attractive means of dealing with the complexity of large software systems.One technical di�culty that trips some people is what a speci�cation means if a pre-conditionis not met. In many speci�cation techniques (like Z and Larch), when an operation's pre-conditionis not met, the interpretation is \all bets are o�." The interpretation is that the pre-condition isa disclaimer.2 In other words, the operation is free to do anything, including not terminate, if thepre-condition does not hold. The technical justi�cation is that when an operation is speci�ed usingpre- and post-conditions, the logical interpretation of the speci�cation is an implication:pre ) post2Thanks to Daniel Jackson for this term. 8



When the pre-condition is \false" then the implication is vacuously true, so any behavior shouldbe allowed.Some formal methods (like InaJo [17] and I/O automata [12]) use the term \pre-condition" butmean something entirely di�erent. The pre-condition is interpreted as a guard; no state transitionshould occur if the guard is not met. Here the interpretation is conjunction:pre ^ postThe di�erence is that under the disclaimer interpretation, for any state s in which the pre-conditiondoes not hold, the state pair, hs; s 0i, for any state s 0, would be in the state transition relation; underthe guard interpretation, no such state pair would be in the relation.3There are other possible interpretations: For example, if the pre-condition is not met, it couldmean that the state transition always goes to a special \error" state and termination is guaranteed,or it could mean the state transition leads to either an \error" state or non-termination. The pointis that you must understand in the notation you are using what it means when a pre-condition ismet or not met.Finally, in the presence of concurrency, you need to specify both kinds of conditions for anoperation: a pre-condition (as a disclaimer) and a guard. The pre-condition is evaluated in the statein which the operation is called; the guard, in the state in which the operation begins executing.Because of concurrency, a scheduler may delay the start of the execution of an operation to sometime after the call of the operation; since there is time between the state in which the operationis called and the state in which it starts executing, an intervening operation (executed by someother process) may change the system's state. Thus, a predicate that holds in the state when theoperation is called may no longer hold in the state when the operation begins to execute. Thepoint is to realize that in the presence of concurrency, there is a new kind of condition to specify. 4Specify errors/exceptions/failures.It is as important to specify erroneous or exceptional behavior as it is to specify normal behavior.If an operation can lead to an undesired state, you should specify the conditions under which thisstate is reachable. If you are lucky, the speci�cation language has some notational convenience(e.g., Larch's signals clause) or prescribed technique (e.g., Z's schema calculus) to remind you todescribe error conditions; otherwise, handling errors may have to be disguised in terms of input oroutput arguments that serve as error ags.There is a close correlation between pre-conditions and handling errors. Z speci�ers draw thisconnection by abiding by this convention using schema disjunction:TotalOp = NormalOp _ ErrorOp3There is further confusion in understanding pre-conditions in Z because even though you might write explicitly inyour schema the conjunction, xpre ^ post, where xpre is the \explicit" pre-condition, the meaning is the implication,pre ) post, where pre is the calculated pre-condition and usually not identical to xpre [6].4Larch calls the guard a when-condition to distinguish it from the standard pre-condition written in a requiresclause. 9



where NormalOp is the speci�cation (schema) of the Op operation under normal conditions, andErrorOp is the speci�cation of Op under the condition in which the pre-condition (which must becalculated [18] from NormalOp) does not hold. Thus, TotalOp gives the speci�cation of Op underall possible conditions.Larch speci�ers, on the other hand, draw the connection by weakening the pre-condition, e.g.,de�ning it to be equivalent to \true," and correspondingly strengthening the post-condition. Thus,Op = op()requires Pensures Qturns into: Op = op() signals (error)requires trueensures if P then Q else signal errorFor interfaces to distributed systems, you cannot ignore the possibility of failure due to networkpartitions or crashed nodes. You could abstract from the di�erent kinds of failures by introducinga generic \failure" exception that stands for errors arising from the distributed nature of yoursystem.The two main points to remember are (1) in support of incremental speci�cation, specify thenormal case and then handle the error cases, but (2) do not forget to handle the error cases!Use nondeterminism.Introducing nondeterminism is an e�ective abstraction technique. Nondeterminism permitsdesign freedom and avoids implementation bias.Nondeterminism may show up in many ways. It may be inherent to the behavior of an operationor object. Consider the choose operation on sets:choose = op (s: set) returns (e: elem)requires s 6= �ensures e 2 sThe post-condition says that the element returned is a member of the set argument; it does notspecify exactly which element is returned.You can express nondeterminism by explicit use of disjunction in a post-condition:tra�c light = op() returns (c: color)ensures c = red _ c = amber _ c = greenIf the type color ranges over red, amber, green, and blue, the use of negation allows you to expressthe same property more succinctly:tra�c light = op() returns (c: color)ensures c 6= blueYou can express nondeterminism by explicit use of an existential quanti�er, which is the more10



general case of disjunction:positively random = op () returns (i : int)ensures 9 x : int : i >j x jFrom a state machine model viewpoint (for instance when discussing deterministic and nonde-terministic �nite state automata), nondeterminism should not be confused with choice. Suppose �is a state transition relation,� : State ;Action ! 2StateThen an example of choice is:�(s; a1) = ftg�(s; a2) = fugwhich says from state s you can either do the action a1 (and go to the next state t), or do theaction a2 (and go to the next state u). However, an example of nondeterminism is:�(s; a1) = ft ;ugwhich says from state s you can do action a1 and go to either state t or u .Some formal methods for concurrent systems introduce their own notions of nondetermin-ism/choice; for example, CSP has two operators, one for internal choice (u) made by the machineand the other for external choice (2) made by the environment5. CCS has yet a di�erent way tomodel nondeterminism.The two main points are that (1) nondeterminism is a useful and important way to abstract,but (2) be careful to understand any given method's way of modeling nondeterminism/choice touse it properly.Use Atomic OperationsFor any system it is important to identify what the atomic operations are. An atomic operationis one whose execution is indivisible; only the states before and after its execution are observable.At any level of abstraction an atomic operation may be implemented in terms of sequences oflower-level atomic operations (e.g., a write operation to a �le on disk might be implemented interms of a sequence of write operations to individual disk blocks). Even assignment can be brokendown into sequences of loads and stores to/from memory and registers.It is usually assumed that each procedure of a sequential program is executed atomically; thisassumption is rarely stated explicitly.For a concurrent system, it is critical to state explicitly what operations are atomic. Theatomicity of an operation, Op, guarantees that no other operation can interfere with Op's executionand that you can abstract away from any intermediate (lower-level) state that it might actuallypass through.5Hoare calls the former \nondeterministic or" and the latter \general choice."11



5. What to Write?With your pen poised over a blank sheet of paper or �ngers over your keyboard, you now face theproblem of what to write down. If you are using a speci�c formal method like Z, VDM, or Larch,you must know the syntax and semantics of its speci�cation language. It is not enough to knowwhat the syntactic features are; you need to understand what each means.It is important to understand the di�erence between syntax and semantics. For example, atypical algebraic speci�cation language has grammatical rules for formulating syntactically legalterms out of function and variable symbols. Each syntactically legal term denotes a value in someunderlying algebraic model. For example, the term insert(insert(�; e1); e2) is a syntactic entitythat denotes the set value fe1; e2g, which is a semantic entity. For a standard model of sets, thesyntactically di�erent term insert(insert(�; e2); e1) denotes the same semantic set value.Associated with any formal method is its assertion language, usually based on some variationof �rst-order predicate logic. With assertions you nail down precisely your system's behavior. It isin your assertions where the smallest change in syntax can have a dramatic change in semantics.Getting the details of your assertions right is typically when you discover most of the conceptualmisunderstandings of your system's design.5.1. General Rules-of-ThumbWhat distinguishes a formal method from mathematics is its methodological aspects. A speci�-cation written in the style of a given formal method is usually not just an unstructured set offormulae. Syntactic features make it easier to read the speci�cation (e.g,. the lines in a Z schema),remind the speci�er what to write (e.g., the modi�es clause in Larch), and aid in structuring alarge speci�cation into smaller, more modular pieces (e.g., Z schemas, Larch traits).Implicit vs. ExplicitMost formal methods have well-de�ned speci�cation languages so the choice of what you explic-itly write down is guided by the grammar and constructs of the language.However, there is a danger of forgetting the power of the unsaid. What is not explicitly statedin a speci�cation often has a meaning. A naive speci�er is likely to be unaware of these implicitconsequences, thereby be in danger of writing nonsense. Here are three examples.The �rst example is the frame issue. If you are specifying the behavior of one piece of thesystem in one speci�cation module, you should say what e�ects that piece has on the rest of thesystem. In some formal methods (e.g., InaJo), you are forced to say explicitly what other pieces ofthe system do not change (NC 00):NC 00(x1; . . . ; xn)This is sometimes impractical if n is large, or worse, if you do not or cannot know what thex1; . . . ; xn are in advance. 12



In some methods (e.g., Larch), you say only what may (but is not required to) change; anythingnot listed explicitly is required not to change:modi�es y1; . . . ; ymThis says y1 . . . ym may change but the rest of the system stays the same.A subtler point about the Larch modi�es clause is that there is signi�cance to the omission ofthe clause. The absence of a modi�es clause says that no objects may change. Thus, if you writea post-condition that asserts some change in value to an input argument or global, the assertionwould be inconsistent with an omitted modi�es clause.Z's � and � operators on schemas are similar to InaJo's NC construct; they allow you to makestatements local to individual operations about whether they change certain state variables or not.Use of these schema operators on say the schemas, Si , leaves implicit the invariant properties ofthe system captured in Si . These properties can be made explicit by \unrolling" the schemas Si .This feature of Z is related to my second example of implicit vs. explicit speci�cation, whichhas to do with invariants. In some formal methods like Z, state invariants are stated explicitly.They are a critical part of the speci�cation, i.e., the \property" component of a Z schema, andused to help calculate operation pre-conditions. In others like Larch, they are implicit and mustbe proved, usually using some kind of inductive proof rule. Finally, in others like the 1980 versionof VDM [9], they are redundant. They are stated explicitly and contribute to the checklist of proofobligations generated for each operation.Finally, the third example has to do with implicit quanti�cation. In many algebraic speci�cationlanguages the i equations in this liste1...eiare implicitly conjoined and quanti�ed as follows:9 f1 . . .9 fn : 8 x1 . . .8 xm : e1 ^ . . . ^ eiwhere f1 . . . fn are the function symbols and x1 . . . xm are the variables that appear in e1 . . . ei .This kind of implicit quanti�cation has subtle consequences. Consider the following (incorrect)equational speci�cation of an operation that determines whether one set is a subset of another:s1 � s2 = (e 2 s1 ) e 2 s2)What you really mean is:s1 � s2 = 8 e :(e 2 s1 ) e 2 s2) 13



but in most algebraic speci�cation languages, writing a quanti�er in the equation is syntacticallyillegal; the tipo� to the error is the occurrence of the free variable e on the righthand side of the�rst equation.Auxiliary De�nitionsDo not be afraid to use auxiliary de�nitions:� To shorten individual speci�cation statements. For example, when argument lists to functionsget too long (say, greater than four), then it probably means the function being de�ned is\doing too much."� To \chunkify" and enable reuse of concepts. When a long expression (say, involving morethan two logical operators and three function symbols) appears multiple (say, more than two)times, then it probably means that chunk of information can be given a name and the namereused accordingly.� To postpone specifying certain details. When you �nd yourself going into too much depthwhile specifying one component of the system in neglect of specifying the rest of the system,then introduce a placeholder term to be de�ned later.NotationIf your primary purpose in specifying is the tangible end-product, i.e., the speci�cation, andyou have chosen a particular formal method to use, stick to its notation. Presumably you chosethis formal method for its brand of expressiveness or for its known applicability to your problemdomain. A carefully designed speci�cation language should have just the right number and kindsof syntactic constructs to let you express all of what you want to say. The constructs providedby the language let you highlight those aspects of the system that are important to record, e.g.,side e�ects in a Larch modi�es clause. At the same time, they also force you to express yourselfin a stylized way using a restricted vocabulary. So, once in a while the notation may force youto express something more awkwardly or more verbosely than you wish; however, either situationmay actually be a sign to rethink your abstractions and decompositions.If you are primarily interested in gaining a deeper understanding of your system through theuse of formalism and the formal speci�cation you write is a means toward your end, then do notfeel overly constrained by notation. You might happen, not necessarily out of choice, to be using aformal method not speci�cally designed for your problem domain. If there is a concept you want toexpress and you cannot express it easily in the given notation, invent some convenient syntax, saywhat you want, and defer giving it a formal meaning till later. Don't let notation get in the wayof your making progress in writing your speci�cation. On the other hand, don't forget to de�neyour inventions. It may be at odds with the rest of the semantics. (If you're lucky, however, youwill have thought of a new speci�cation language idiom that is more generally useful than for justyour problem at hand.)Since no one method is suitable for specifying all aspects of a system or all kinds of systems, youmight choose to resort to the only practical strategy known today: to mix methods, and hence, touse a mix of notations. For example, you might use Z to specify the static properties of your system(state space); and CSP, its dynamic behavior (sequences of state transitions). Mixing methods,14


