
1/29

State-of-the-art SAT Solving

Marijn J.H. Heule

SC2 Summer School, July 31, 2017

2/29

Satisfiability (SAT) Solving Has Many Applications

formal verification

planning and
scheduling

exploit
generation

automated
theorem proving

bioinformaticssecurity train safety

term rewriting

termination

encode decodeSAT solver

3/29

Dress Code as Satisfiability Problem

The SAT problem: Can a formula in propositional logic be satisfied?

Propositional logic

◮ Boolean variables : tie and shirt (for the example below)

◮ Logic symbols : ¬ (not), ∨ (or), ∧ (and)

◮ Literals : tie, ¬tie, shirt, and ¬shirt

Three conditions / clauses :

◮ not wearing a tie nor a shirt is impolite (tie∨ shirt)

◮ clearly one should not wear a tie without a shirt (¬tie∨ shirt)

◮ wearing a tie and a shirt is overkill ¬(tie∧ shirt) ≡ (¬tie∨ ¬shirt)

Is the formula (tie∨ shirt) ∧ (¬tie∨ shirt) ∧ (¬tie∨ ¬shirt) satisfiable?

4/29

A Larger, but Still Small Satisfiability Problem

Is the formula below satisfiable?

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) ∧

(x1 ∨ x4 ∨ x5) ∧ (¬x1 ∨ ¬x4 ∨ ¬x5) ∧ (x2 ∨ x3 ∨ x5) ∧ (¬x2 ∨ ¬x3 ∨ ¬x5) ∧

(x1 ∨ x5 ∨ x6) ∧ (¬x1 ∨ ¬x5 ∨ ¬x6) ∧ (x2 ∨ x4 ∨ x6) ∧ (¬x2 ∨ ¬x4 ∨ ¬x6) ∧

(x1 ∨ x6 ∨ x7) ∧ (¬x1 ∨ ¬x6 ∨ ¬x7) ∧ (x2 ∨ x5 ∨ x7) ∧ (¬x2 ∨ ¬x5 ∨ ¬x7) ∧

(x3 ∨ x4 ∨ x7) ∧ (¬x3 ∨ ¬x4 ∨ ¬x7) ∧ (x1 ∨ x7 ∨ x8) ∧ (¬x1 ∨ ¬x7 ∨ ¬x8) ∧

(x2 ∨ x6 ∨ x8) ∧ (¬x2 ∨ ¬x6 ∨ ¬x8) ∧ (x3 ∨ x5 ∨ x8) ∧ (¬x3 ∨ ¬x5 ∨ ¬x8) ∧

(x1 ∨ x8 ∨ x9) ∧ (¬x1 ∨ ¬x8 ∨ ¬x9) ∧ (x2 ∨ x7 ∨ x9) ∧ (¬x2 ∨ ¬x7 ∨ ¬x9) ∧

(¬x3 ∨ ¬x6 ∨ ¬x9) ∧ (x4 ∨ x5 ∨ x9) ∧ (¬x4 ∨ ¬x5 ∨ ¬x9)

4/29

A Larger, but Still Small Satisfiability Problem

Is the formula below satisfiable?

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) ∧

(x1 ∨ x4 ∨ x5) ∧ (¬x1 ∨ ¬x4 ∨ ¬x5) ∧ (x2 ∨ x3 ∨ x5) ∧ (¬x2 ∨ ¬x3 ∨ ¬x5) ∧

(x1 ∨ x5 ∨ x6) ∧ (¬x1 ∨ ¬x5 ∨ ¬x6) ∧ (x2 ∨ x4 ∨ x6) ∧ (¬x2 ∨ ¬x4 ∨ ¬x6) ∧

(x1 ∨ x6 ∨ x7) ∧ (¬x1 ∨ ¬x6 ∨ ¬x7) ∧ (x2 ∨ x5 ∨ x7) ∧ (¬x2 ∨ ¬x5 ∨ ¬x7) ∧

(x3 ∨ x4 ∨ x7) ∧ (¬x3 ∨ ¬x4 ∨ ¬x7) ∧ (x1 ∨ x7 ∨ x8) ∧ (¬x1 ∨ ¬x7 ∨ ¬x8) ∧

(x2 ∨ x6 ∨ x8) ∧ (¬x2 ∨ ¬x6 ∨ ¬x8) ∧ (x3 ∨ x5 ∨ x8) ∧ (¬x3 ∨ ¬x5 ∨ ¬x8) ∧

(x1 ∨ x8 ∨ x9) ∧ (¬x1 ∨ ¬x8 ∨ ¬x9) ∧ (x2 ∨ x7 ∨ x9) ∧ (¬x2 ∨ ¬x7 ∨ ¬x9) ∧

(¬x3 ∨ ¬x6 ∨ ¬x9) ∧ (x4 ∨ x5 ∨ x9) ∧ (¬x4 ∨ ¬x5 ∨ ¬x9)

Yes. The correctness of the solution is easy to check.

4/29

A Larger, but Still Small Satisfiability Problem

Is the formula below still satisfiable?

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) ∧

(x1 ∨ x4 ∨ x5) ∧ (¬x1 ∨ ¬x4 ∨ ¬x5) ∧ (x2 ∨ x3 ∨ x5) ∧ (¬x2 ∨ ¬x3 ∨ ¬x5) ∧

(x1 ∨ x5 ∨ x6) ∧ (¬x1 ∨ ¬x5 ∨ ¬x6) ∧ (x2 ∨ x4 ∨ x6) ∧ (¬x2 ∨ ¬x4 ∨ ¬x6) ∧

(x1 ∨ x6 ∨ x7) ∧ (¬x1 ∨ ¬x6 ∨ ¬x7) ∧ (x2 ∨ x5 ∨ x7) ∧ (¬x2 ∨ ¬x5 ∨ ¬x7) ∧

(x3 ∨ x4 ∨ x7) ∧ (¬x3 ∨ ¬x4 ∨ ¬x7) ∧ (x1 ∨ x7 ∨ x8) ∧ (¬x1 ∨ ¬x7 ∨ ¬x8) ∧

(x2 ∨ x6 ∨ x8) ∧ (¬x2 ∨ ¬x6 ∨ ¬x8) ∧ (x3 ∨ x5 ∨ x8) ∧ (¬x3 ∨ ¬x5 ∨ ¬x8) ∧

(x1 ∨ x8 ∨ x9) ∧ (¬x1 ∨ ¬x8 ∨ ¬x9) ∧ (x2 ∨ x7 ∨ x9) ∧ (¬x2 ∨ ¬x7 ∨ ¬x9) ∧

(x3 ∨ x6 ∨ x9)∧ (¬x3 ∨ ¬x6 ∨ ¬x9) ∧ (x4 ∨ x5 ∨ x9) ∧ (¬x4 ∨ ¬x5 ∨ ¬x9)

No. Adding a single clause eliminates all solutions.

Checking a No answer can be expensive.

5/29

Satisfiability as the Cornerstone of the P = NP Question

A fundamental question in computer science asks whether
searching for a solution is harder than verifying a given solution.

For example, consider the Sudoku
on the right: Is searching for the
solution harder than verifying a
given candidate solution?

4 3
7 9

6
1 4 5

9 1
2 6

7 2
5 8

9

5/29

Satisfiability as the Cornerstone of the P = NP Question

A fundamental question in computer science asks whether
searching for a solution is harder than verifying a given solution.

For example, consider the Sudoku
on the right: Is searching for the
solution harder than verifying a
given candidate solution?

This is the P = NP question.
Solving it is worth $1,000,000.

4 3
7 9

6
1 4 5

9 1
2 6

7 2
5 8

9

1 7 8 9 2 6 5
5 8 6 2 1 4 3
3 9 2 5 7 1 8 4
8 7 3 6 2 9

6 4 7 2 5 3 8
1 5 9 3 8 4 7

6 3 8 5 9 4 1
7 9 4 6 1 3 2
4 2 1 8 3 6 5 7

Cook-Levin Theorem [1971]: SAT is NP-complete.
Searching is as easy as verifying if and only if this holds for SAT.

6/29

Enormous Progress in the Last Two Decades

mid ’90s: formulas solvable with thousands of variables and clauses
now: formulas solvable with millions of variables and clauses

Edmund Clarke: “a key

technology of the 21st century”

Donald Knuth: “evidently a killer app,

because it is key to the solution of so

many other problems”

7/29

Overview

Search for Lemmas (now)
◮ Learning Lemmas

◮ Data-structures

◮ Heuristics

Search for Simplification (after the break)
◮ Variable elimination

◮ Blocked clause elimination

◮ Unhiding redundancy

8/29

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ ¬x4 ∨ ¬x5) ∧
(¬x3 ∨ ¬x2 ∨ ¬x4) ∧
Fextra

0

8/29

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ ¬x4 ∨ ¬x5) ∧
(¬x3 ∨ ¬x2 ∨ ¬x4) ∧
Fextra

0

1

x5=1

8/29

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ ¬x4 ∨ ¬x5) ∧
(¬x3 ∨ ¬x2 ∨ ¬x4) ∧
Fextra

0

1

2

x5=1

x2=1

8/29

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ ¬x4 ∨ ¬x5) ∧
(¬x3 ∨ ¬x2 ∨ ¬x4) ∧
Fextra

0

1

2

6

x5=1

x2=1

8/29

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ ¬x4 ∨ ¬x5) ∧
(¬x3 ∨ ¬x2 ∨ ¬x4) ∧
Fextra

0

1

2

6

7

x5=1

x2=1

x1=0

8/29

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ ¬x4 ∨ ¬x5) ∧
(¬x3 ∨ ¬x2 ∨ ¬x4) ∧
Fextra

0

1

2

6

7

x5=1

x2=1

x1=0
x4=1

8/29

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ ¬x4 ∨ ¬x5) ∧
(¬x3 ∨ ¬x2 ∨ ¬x4) ∧
Fextra

0

1

2

6

7

x5=1

x2=1

x1=0
x4=1
x3=1
x3=0

8/29

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ ¬x4 ∨ ¬x5) ∧
(¬x3 ∨ ¬x2 ∨ ¬x4) ∧
Fextra

7

1

2

7

7

7

x1=0 x4=1

x2=1

x5=1

x3=0

x3=1

0

1

2

6

7

x5=1

x2=1

x1=0
x4=1
x3=1
x3=0

8/29

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ ¬x4 ∨ ¬x5) ∧
(¬x3 ∨ ¬x2 ∨ ¬x4) ∧
Fextra

7

1

2

7

7

7

x1=0 x4=1

x2=1

x5=1

x3=0

x3=1

(¬x2 ∨ ¬x4 ∨ ¬x5)

0

1

2

6

7

x5=1

x2=1

x1=0
x4=1
x3=1
x3=0

8/29

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ ¬x4 ∨ ¬x5) ∧
(¬x3 ∨ ¬x2 ∨ ¬x4) ∧
Fextra

7

1

2

7

7

7

x1=0 x4=1

x2=1

x5=1

x3=0

x3=1

(¬x2 ∨ ¬x4 ∨ ¬x5)

0

1

2

6

7

x5=1

x2=1

x1=0
x4=1
x3=1
x3=0

8/29

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ ¬x4 ∨ ¬x5) ∧
(¬x3 ∨ ¬x2 ∨ ¬x4) ∧
Fextra

7

1

2

7

7

7

x1=0 x4=1

x2=1

x5=1

x3=0

x3=1

(¬x2 ∨ ¬x4 ∨ ¬x5)

0

1

2

6

7

2

x5=1

x2=1

x1=0
x4=1
x3=1
x3=0

x4=0
x1=1

8/29

Conflict-driven SAT solvers: Search and Analysis

(x1 ∨ x4) ∧
(x3 ∨ ¬x4 ∨ ¬x5) ∧
(¬x3 ∨ ¬x2 ∨ ¬x4) ∧
Fextra

7

1

2

7

7

7

x1=0 x4=1

x2=1

x5=1

x3=0

x3=1

(¬x2 ∨ ¬x4 ∨ ¬x5)

0

1

2

6

7

2

x5=1

x2=1

x1=0
x4=1
x3=1
x3=0

x4=0
x1=1

9/29

Conflict-driven SAT solvers: Pseudo-code

1: while TRUE do

2: ldecision := GetDecisionLiteral()

3: If no ldecision then return satisfiable

4: F := Simplify(F (ldecision ← 1))

5: while F contains Cfalsified do

6: Cconflict := AnalyzeConflict(Cfalsified)

7: If Cconflict = ∅ then return unsatisfiable

8: BackTrack(Cconflict)

9: F := Simplify(F ∪ {Cconflict})

10: end while

11: end while

10/29

Learning conflict clauses [Marques-SilvaSakallah’96]

6

x13=0

7

x11=1

4

x6=0

7

x7=1

7

x12=0

7

x2=0

3

x4=1

7

x10=0

1

x8=1

7

x1=1

7

x3=1

7

x5=0

5

x17=0

2

x19=1

7

x18=1

7

x18=0

10/29

Learning conflict clauses [Marques-SilvaSakallah’96]

6

x13=0

7

x11=1

4

x6=0

7

x7=1

7

x12=0

7

x2=0

3

x4=1

7

x10=0

1

x8=1

7

x1=1

7

x3=1

7

x5=0

5

x17=0

2

x19=1

7

x18=1

7

x18=0

(¬x1 ∨ ¬x3 ∨ x5 ∨ x17 ∨ ¬x19)

tri-asserting clause

10/29

Learning conflict clauses [Marques-SilvaSakallah’96]

6

x13=0

7

x11=1

4

x6=0

7

x7=1

7

x12=0

7

x2=0

3

x4=1

7

x10=0

1

x8=1

7

x1=1

7

x3=1

7

x5=0

5

x17=0

2

x19=1

7

x18=1

7

x18=0

(x10 ∨ ¬x8 ∨ x17 ∨ ¬x19)

first unique implication point

10/29

Learning conflict clauses [Marques-SilvaSakallah’96]

6

x13=0

7

x11=1

4

x6=0

7

x7=1

7

x12=0

7

x2=0

3

x4=1

7

x10=0

1

x8=1

7

x1=1

7

x3=1

7

x5=0

5

x17=0

2

x19=1

7

x18=1

7

x18=0

(x2 ∨ ¬x4 ∨ ¬x8 ∨ x17 ∨ ¬x19)

second unique implication point

11/29

Average Learned Clause Length

12/29

Data-structures

Watch pointers

13/29

Simple data structure for unit propagation

14/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = ∗ , x2 = ∗ , x3 = ∗ , x4 = ∗ , x5 = ∗ , x6 = ∗ }

¬x1 x2 ¬x3 ¬x5 x6

x1 ¬x3 x4 ¬x5 ¬x6

14/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = ∗ , x2 = ∗ , x3 = ∗ , x4 = ∗ , x5 = 1, x6 = ∗ }

¬x1 x2 ¬x3 ¬x5 x6

x1 ¬x3 x4 ¬x5 ¬x6

14/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = ∗ , x2 = ∗ , x3 = 1, x4 = ∗ , x5 = 1, x6 = ∗ }

¬x1 x2 ¬x3 ¬x5 x6

x1 ¬x3 x4 ¬x5 ¬x6

14/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = ∗ , x2 = ∗ , x3 = 1, x4 = ∗ , x5 = 1, x6 = ∗ }

¬x1 x2 ¬x3 ¬x5 x6

x1 ¬x3x4 ¬x5 ¬x6

14/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = ∗ , x3 = 1, x4 = ∗ , x5 = 1, x6 = ∗ }

¬x1 x2 ¬x3 ¬x5 x6

x1 ¬x3x4 ¬x5 ¬x6

14/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = ∗ , x3 = 1, x4 = ∗ , x5 = 1, x6 = ∗ }

¬x1x2 ¬x3 ¬x5x6

x1 ¬x3x4 ¬x5 ¬x6

14/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = ∗ , x3 = 1, x4 = 0, x5 = 1, x6 = ∗ }

¬x1x2 ¬x3 ¬x5x6

x1 ¬x3x4 ¬x5 ¬x6

14/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1, x6 = ∗ }

¬x1x2 ¬x3 ¬x5x6

x1 ¬x3x4 ¬x5 ¬x6

14/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1, x6 = 1}

¬x1x2 ¬x3 ¬x5x6

x1 ¬x3x4 ¬x5 ¬x6

14/29

Conflict-driven: Watch pointers (1) [MoskewiczMZZM’01]

ϕ = {x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1, x6 = 1}

¬x1x2 ¬x3 ¬x5x6

x1 ¬x3x4 ¬x5 ¬x6

15/29

Conflict-driven: Watch pointers (2) [MoskewiczMZZM’01]

Only examine (get in the cache) a clause when both

◮ a watch pointer gets falsified

◮ the other one is not satisfied

While backjumping, just unassign variables

Conflict clauses → watch pointers

No detailed information available

Not used for binary clauses

16/29

Average Number Clauses Visited Per Propagation

17/29

Percentage visited clauses with other watched literal true

18/29

Heuristics

19/29

Most important CDCL heuristics

Variable selection heuristics
◮ aim: minimize the search space

◮ plus: could compensate a bad value selection

19/29

Most important CDCL heuristics

Variable selection heuristics
◮ aim: minimize the search space

◮ plus: could compensate a bad value selection

Value selection heuristics
◮ aim: guide search towards a solution (or conflict)

◮ plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche’07]

19/29

Most important CDCL heuristics

Variable selection heuristics
◮ aim: minimize the search space

◮ plus: could compensate a bad value selection

Value selection heuristics
◮ aim: guide search towards a solution (or conflict)

◮ plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche’07]

Restart strategies
◮ aim: avoid heavy-tail behavior [GomesSelmanCrato’97]

◮ plus: focus search on recent conflicts when combined with
dynamic heuristics

20/29

Variable selection heuristics

Based on the occurrences in the (reduced) formula
◮ examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

◮ not practical for CDCL solver due to watch pointers

20/29

Variable selection heuristics

Based on the occurrences in the (reduced) formula
◮ examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

◮ not practical for CDCL solver due to watch pointers

Variable State Independent Decaying Sum (VSIDS)
◮ original idea (zChaff): for each conflict, increase the score
of involved variables by 1, half all scores each 256 conflicts

[MoskewiczMZZM’01]

◮ improvement (MiniSAT): for each conflict, increase the
score of involved variables by δ and increase δ := 1.05δ

[EenSörensson’03]

21/29

Visualization of VSIDS in PicoSAT

http://www.youtube.com/watch?v=MOjhFywLre8

http://www.youtube.com/watch?v=MOjhFywLre8

22/29

Value selection heuristics

Based on the occurrences in the (reduced) formula
◮ examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

◮ not practical for CDCL solver due to watch pointers

22/29

Value selection heuristics

Based on the occurrences in the (reduced) formula
◮ examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

◮ not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
◮ negative branching (early MiniSAT) [EenSörensson’03]

22/29

Value selection heuristics

Based on the occurrences in the (reduced) formula
◮ examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

◮ not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
◮ negative branching (early MiniSAT) [EenSörensson’03]

Based on the last implied value (phase-saving)
◮ introduced to CDCL [PipatsrisawatDarwiche’07]

◮ already used in local search [HirschKojevnikov’01]

23/29

Heuristics: Phase-saving [PipatsrisawatDarwiche’07]

Selecting the last implied value remembers solved components

negative branching phase-saving

24/29

Restarts

Restarts in CDCL solvers:
◮ Counter heavy-tail behavior [GomesSelmanCrato’97]

◮ Unassign all variables but keep the (dynamic) heuristics

24/29

Restarts

Restarts in CDCL solvers:
◮ Counter heavy-tail behavior [GomesSelmanCrato’97]

◮ Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh’99, LubySinclairZuckerman’93]

◮ Geometrical restart: e.g. 100, 150, 225, 333, 500, 750, . . .

◮ Luby sequence: e.g. 100, 100, 200, 100, 100, 200, 400, . . .

24/29

Restarts

Restarts in CDCL solvers:
◮ Counter heavy-tail behavior [GomesSelmanCrato’97]

◮ Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh’99, LubySinclairZuckerman’93]

◮ Geometrical restart: e.g. 100, 150, 225, 333, 500, 750, . . .

◮ Luby sequence: e.g. 100, 100, 200, 100, 100, 200, 400, . . .

Rapid restarts by reusing trail:
[vanderTakHeuleRamos’11]

◮ Partial restart same effect as full restart

◮ Optimal strategy Luby-1: 1, 1, 2, 1, 1, 2, 4, . . .

25/29

Conflict-Clause Minimization

26/29

Self-Subsumption

Use self-subsumption to shorten conflict clauses

C ∨ l D ∨ ¬l
D

C ⊆ D
(a ∨ b ∨ l) (a ∨ b ∨ c ∨ ¬l)

(a ∨ b ∨ c)

Conflict clause minimization is an important optimization.

26/29

Self-Subsumption

Use self-subsumption to shorten conflict clauses

C ∨ l D ∨ ¬l
D

C ⊆ D
(a ∨ b ∨ l) (a ∨ b ∨ c ∨ ¬l)

(a ∨ b ∨ c)

Conflict clause minimization is an important optimization.

Use implication chains to further minimization:

. . . (¬a ∨ b)(¬b ∨ c)(a ∨ c ∨ d) . . . ⇒

. . . (¬a ∨ b)(¬b ∨ c)(c ∨ d) . . .

27/29

Conflict-clause minimization [SörenssonBiere’09]

1 1 1

2 2 2 2

3 3

4 4 4 4

4 4 4

x1 =0

x2 =1 x3 =0

x4 =1

x5 =0 x6 =1 x7 =0

x8 =1

x9 =0

x10 =1

x11=0 x12=1 x13=0

x14=1 x15=0 x13=1

27/29

Conflict-clause minimization [SörenssonBiere’09]

1 1 1

2 2 2 2

3 3

4 4 4 4

4 4 4

x1 =0

x2 =1 x3 =0

x4 =1

x5 =0 x6 =1 x7 =0

x8 =1

x9 =0

x10 =1

x11=0 x12=1 x13=0

x14=1 x15=0 x13=1
first unique

implication point

(¬x2 ∨ x5 ∨ ¬x6 ∨ x7 ∨ x11)

27/29

Conflict-clause minimization [SörenssonBiere’09]

1 1 1

2 2 2 2

3 3

4 4 4 4

4 4 4

x1 =0

x2 =1 x3 =0

x4 =1

x5 =0 x6 =1 x7 =0

x8 =1

x9 =0

x10 =1

x11=0 x12=1 x13=0

x14=1 x15=0 x13=1
last unique

implication point

(x1 ∨ ¬x4 ∨ ¬x8 ∨ ¬x10)

27/29

Conflict-clause minimization [SörenssonBiere’09]

1 1 1

2 2 2 2

3 3

4 4 4 4

4 4 4

x1 =0

x2 =1 x3 =0

x4 =1

x5 =0 x6 =1 x7 =0

x8 =1

x9 =0

x10 =1

x11=0 x12=1 x13=0

x14=1 x15=0 x13=1
reduced conflict clause

(¬x2 ∨ x5 ∨ ¬x6 ∨ x11)

27/29

Conflict-clause minimization [SörenssonBiere’09]

1 1 1

2 2 2 2

3 3

4 4 4 4

4 4 4

x1 =0

x2 =1 x3 =0

x4 =1

x5 =0 x6 =1 x7 =0

x8 =1

x9 =0

x10 =1

x11=0 x12=1 x13=0

x14=1 x15=0 x13=1
minimized conflict clause

(¬x2 ∨ x5 ∨ ∨x11)

28/29

Conclusions: state-of-the-art CDCL solver

Key contributions to CDCL solvers:
◮ concept of conflict clauses (grasp)
[Marques-SilvaSakallah’96]

◮ restart strategies [GomesSC’97,LubySZ’93]

◮ 2-watch pointers and VSIDS (zChaff)
[MoskewiczMZZM’01]

◮ efficient implementation (Minisat) [EenSörensson’03]

◮ phase-saving (Rsat) [PipatsrisawatDarwiche’07]

◮ conflict-clause minimization [SörenssonBiere’09]

+ Pre- and in-processing techniques

29/29

State-of-the-art SAT Solving

Marijn J.H. Heule

SC2 Summer School, July 31, 2017

	Data-structures
	Heuristics
	Conflict-Clause Minimization

