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Satisfiability (SAT) Solving Has Many Applications

formal verification security train safety
Glod 1 J
000
0000

planning and automated exploit term rewriting
scheduling theorem proving generation termination

encol\b SAT solver /decode
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Dress Code as Satisfiability Problem

The SAT problem: Can a formula in propositional logic be satisfied?

Propositional logic
» Boolean variables : tie and shirt (for the example below)
» Logic symbols : — (not), V (or), A (and)
» Literals : tie, —tie, shirt, and —shirt

Three conditions / clauses :
» not wearing a tie nor a shirt is impolite (tie V shirt)
» clearly one should not wear a tie without a shirt (—tie V shirt)
» wearing a tie and a shirt is overkill —(tie A shirt) = (—tie V —shirt)

Is the formula (tie V shirt) A (—tie V shirt) A (—tie V —shirt) satisfiable?
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A Larger, but Still Small Satisfiability Problem

Is the formula below satisfiable?

(Xl V X2 \/X3) AN (—\Xl V =xo V —|X3) N (Xl V X3 \/X4) N (—\Xl V —=x3 V —\X4)
(x1 VxqgVxs)A(—x1VoxgVoxs)A(xaVx3Vxs)A(—xeVoxgVioxs)
(x1 Vx5 Vxg) A (—x1VoxsVoxg) A(xaVxgVxe) A(—xaVoixg Voixg)
(Xl V Xe \/X7) A (—\Xl V —xg V —|X7) N (X2 V X5 \/X7) N (_‘X2 V —ix5 V —\X7)
(X3 V X4 \/X7) A (—\X3 V —ixg V —|X7) N (Xl V X7 \/Xg) N (—\Xl V —x7z V —\Xg)
(x2VxeVxg)A(—x2V—xgV-xg)A(x3VxsVxg)A(—x3V-xs V-ixg)
(x1 Vxg Vxg) A (—x1V—oxgV-oxg)A(xaVxzVxg)A(—xaV—xz Voixg)

(‘1)(3 V —ixg V -w;q;) A (}(4 Vx5 V )q;) N (‘1}(4 V —xg V ‘1)q;)

> > > > > > >
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A Larger, but Still Small Satisfiability Problem

Is the formula below satisfiable?

(1 Vo Vx3) A (mx1 V=oxo V) A (g Vxg Voxg) A(—xg Voxs Vooixg) A
(1 VxaVxs)A(—x1VoxgVoxs) Ao Vg Vxg)A(—xoVoxs Vioxs) A
(x1 Vxs Vxg) A(—x1 V=xs Voxg) Ao Vg Vxg) A(—xoVoixg Voixg) A
(x1 Vxg Vx7) A(=x1 Vx5 V=x7) Ao Vxs Vxz) A (—xo Voixs Voixg) A
(3Vxa Vxz)A(—x3V=oxgVxz) A Vg Vxg) A(—xg Vo Voixg) A
(2o VxgVxg)A(—x2V—=xgV—oxg) A(xzVxsVxg)A(—x3Voxs Voxg) A
(x1 Vxg Vxg) A (—x1 V=xgV=xg) Ao Vxz Vxg) A(—xoV—xz Voixg) A
( ( (

“x3V =ixg Vo) A (xa Vxs V xg) A (mixg V —x5 V —1x0)

Yes. The correctness of the solution is easy to check.
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A Larger, but Still Small Satisfiability Problem

Is the formula below still satisfiable?

(Xl V X2 \/X3) A (—\Xl V =xo V —|X3) N (Xl V X3 \/X4) N (—\Xl V —=x3 V —\X4)
(x1 VxqgVxs)A(—x1VoxgVoxg)A(xaVxsVxs)A(—xeVoxgVioxs)
(x1 Vx5 Vxg) A (—x1VoxsVoxg) A(xaVxgVxe) A(—xaVoixg Voixg)
(Xl V Xe \/X7) A (—\Xl V —xg V —|X7) N (X2 V X5 \/X7) N (_‘X2 V —ix5 V —\X7)
(X3 V X4 \/X7) A (—\X3 V —ixg V —|X7) N (Xl V X7 \/Xg) N (—\Xl V —x7z V —\Xg)
(x2VxeVxg)A(—x2V—xgV-xg)A(x3VxsVxg)A(—x3V-xsV-xg)
(x1 Vxg Vxg) A (—x1V—oxgV-oxg)A(xaVxzVxg)A(—xaV—xz Voixg)
()(3 V xg V )q;) A (‘1)(3 V —xg V -w;q;) A ()(4 Vx5 V )q;) N (‘1)(4 V —xg V ‘1)q;)

No. Adding a single clause eliminates all solutions.

Checking a No answer can be expensive.
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Satisfiability as the Cornerstone of the P = NP Question

A fundamental question in computer science asks whether
searching for a solution is harder than verifying a given solution.

For example, consider the Sudoku
on the right: Is searching for the
solution harder than verifying a
given candidate solution?

4

3

6

1

N |©O
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Satisfiability as the Cornerstone of the P = NP Question

A fundamental question in computer science asks whether
searching for a solution is harder than verifying a given solution.

For example, consider the Sudoku 114171318191216/5
on the right: Is searching for the 516 g g 114 ; AE:
solution harder than verifying a g g e f g 5 g ;I
given candidate solution? 9lel4l 71215131118

21115]19(3(8]4|7]6
This is the P = NP question. g g g 2 2 3 g é é
Solving it is worth $1,000,000. 2121118931651 7

Cook-Levin Theorem [1971]: SAT is NP-complete.
Searching is as easy as verifying if and only if this holds for SAT.
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Enormous Progress in the Last Two Decades

mid '90s:  formulas solvable with thousands of variables and clauses
now: formulas solvable with millions of variables and clauses

w

HANDBOOK N CLASSIC WORK.
:: of satisfiability
. The Art of
: Computer
Programming

VOLUME 4
Satisfiability s

DONALD E. KNUTH

Edmund Clarke: “a key Donald Knuth: “evidently a killer app,
.+ because it is key to the solution of so

technology of the 21st century’
many other problems”
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Overview

Search for Lemmas (now)
» Learning Lemmas
» Data-structures
» Heuristics

Search for Simplification (after the break)
» Variable elimination
» Blocked clause elimination
» Unhiding redundancy
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Conflict-driven SAT solvers: Search and Analysis

(X1 \Y X4) VAN @
(x3V xq V —x5) A

(—|X3 V —=xo V —\X4) A

Fextra
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Conflict-driven SAT solvers: Search and Analysis

(X1 \Y X4) VAN o
(x3V xg V —x5) A x5=1
(—|X3 V —=xo V —\X4) A o

F extra
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Conflict-driven SAT solvers: Search and Analysis

(X1 \Y X4) VAN o
(x3V xg V —x5) A x5 =1
(—|X3 V —=xo V —\X4) A o
Fextra Xy = 1
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Conflict-driven SAT solvers: Search and Analysis

(X1 \Y X4) VAN o
(x3V xg V —x5) A x5=1
(—|X3 V —=xo V —\X4) A o
Fextra Xy = 1
©

©
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Conflict-driven SAT solvers: Search and Analysis

(Xl \Y X4) N Q
(X3\/—|X4\/—|X5) A x5 =1
(—|X3 V —=xo V —\X4) A o
Fextra X2:1
©
(©)
X1 =0
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Conflict-driven SAT solvers: Search and Analysis

(Xl \Y X4) VAN o
(X3\/—|X4\/—|X5) A x5 =1
(—|X3 V —=xo V —|X4) A o
Fextra X2:1
©
(©)
X1 =0
X4 =
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Conflict-driven SAT solvers: Search and Analysis

(X1 \Y X4) VAN o
(x3V —xa V —ix5) A x5=1
(—|X3 V —=xo V —|X4) A o
Fextra X2:1
©
(©)
X1 =0
X4 =1
x3=1
x3=0
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Conflict-driven SAT solvers: Search and Analysis

(Xl \Y X4) VAN

(X3 V —xg V —|X5) A
(—|X3 V —=xo V —|X4) A
fextra

©
X5:1
O
xo=1
©
(©)
x1=0
X4 = 1
x3=1
x3=0
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Conflict-driven SAT solvers: Search and Analysis

(Xl \Y X4) VAN Q
(X3\/—\X4\/—|X5) A x5=1
(—\X3 V —=xo V —|X4) A 0
fextra
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Conflict-driven SAT solvers: Search and Analysis

(X1 \Y X4) VAN

(X3 V —=xg V —|X5) A
(—|X3 V —=xo V —|X4) A
fextra
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Conflict-driven SAT solvers: Search and Analysis

(Xl V X4) AN

(X3 V —=xg V —|X5) A
(—|X3 V —xo V —|X4) A\
fextra

x=1

(mx2 V —xg V —ixs)
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Conflict-driven SAT solvers: Search and Analysis

(Xl V X4) AN

(X3 V —=xg V —|X5) A
(—|X3 V —xo V —|X4) A\
fextra

x=1

(mx2 V —xg V —ixs)
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Conflict-driven SAT solvers: Pseudo-code

1: while TRUE do

2:

3:

4:

8:

9:

10:

lqecision := GETDECISIONLITERAL( )

If no ljecision then return satisfiable

F = SIMPLIFY( F (lgecision < 1) )

while F contains Cgsifieq dO
Ceonflict := ANALYZECONFLICT( Ciaisified )
If Coonflict = © then return unsatisfiable
BACKTRACK( Ceonflict )
F = SMPLIFY( F U { Ceonflict | )

end while

11: end while
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Learning conflict clauses ~ [Marques-SilvaSakallah'96]

)@G&

x13=0

x19=1
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Learning conflict clauses ~ [Marques-SilvaSakallah'96]

)@G&

x13=0
(ﬁXl V-=x3VxsVx7V —|X19) x19=1

tri-asserting clause
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Learning conflict clauses ~ [Marques-SilvaSakallah'96]

(XIO V —=xg V x17 V ﬁXlg) x19=1

first unique implication point
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Learning conflict clauses ~ [Marques-SilvaSakallah'96]

xg=1 xg=1 \ x17=0 \
X6:0 a 7 ;

x13=0

(x2 Vx4 V —ixg V x17 V —ix19) x19=1

second unique implication point
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Average Learned Clause Length
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Data-structures

Watch pointers
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Simple data structure for unit propagation

:// 1|2
1
Variables ?{% ™| 2| Clauses
2 —~_
3N 3 -1]-2
- -3/ 1
\

13/29



Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

q):{x]_: *'X2: *'X3: *,X4: *'XSZ *1X6: *}

—\Xl

X1
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

q):{xlz *,X2: *'X3: *'X4: *1X5:11X6: *}

X1 X2

X1 X3
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

p={x1=*x,x=*x,x3=1xa=%,x5=1x5= *}

—\Xl

X1
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

p={xa=*,x=*x,x3=1Lxa=%x,x5=1x= %}

—\Xl

X2

X1

X4
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

p={x1=1lx=x,x3=1x=%,x5=1x= %}

‘|X1

X2

\/

X1

X4

14/29



Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

p={xx=1lx=*x,x3=1,xa=%,x5=1,x= *}

X6

X1

X4
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

p={x1=lLx=*xx3=1x=0x5=1,x= *}

X6

X1

X4
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

p={x=1x=0x3=1,x=0xs=1x5= %}

X6

X1

X4
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

p={x=1x=0x3=1x=0x=1x =1}

X6

X2

X1

X4
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Conflict-driven: Watch pointers (1) [MoskewiczMZZM'01]

p={x1=1x=0x3=1x=0x=1x =1}

X6

X2

X1

X4
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Conflict-driven: Watch pointers (2) [MoskewiczMZZM'01]

Only examine (get in the cache) a clause when both
» a watch pointer gets falsified
» the other one is not satisfied

While backjumping, just unassign variables
Conflict clauses — watch pointers
No detailed information available

Not used for binary clauses
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Average Number Clauses Visited Per Propagation
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Percentage visited
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Heuristics
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Most important CDCL heuristics

Variable selection heuristics
» aim: minimize the search space
» plus: could compensate a bad value selection
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Most important CDCL heuristics

Variable selection heuristics
» aim: minimize the search space
» plus: could compensate a bad value selection

Value selection heuristics
» aim: guide search towards a solution (or conflict)

» plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche'07]
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Most important CDCL heuristics

Variable selection heuristics
» aim: minimize the search space
» plus: could compensate a bad value selection

Value selection heuristics
» aim: guide search towards a solution (or conflict)

» plus: could compensate a bad variable selection,
cache solutions of subproblems [PipatsrisawatDarwiche'07]

Restart strategies
» aim: avoid heavy-tail behavior [GomesSelmanCrato'97]

» plus: focus search on recent conflicts when combined with
dynamic heuristics
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Variable selection heuristics

Based on the occurrences in the (reduced) formula

» examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

» not practical for CDCL solver due to watch pointers
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Variable selection heuristics

Based on the occurrences in the (reduced) formula

» examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

» not practical for CDCL solver due to watch pointers

Variable State Independent Decaying Sum (VSIDS)

» original idea (zChaff): for each conflict, increase the score
of involved variables by 1, half all scores each 256 conflicts
[MoskewiczMZZM'01]

» improvement (MiniSAT): for each conflict, increase the
score of involved variables by ¢ and increase 0 := 1.056
[EenSérensson’03]
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Visualization of VSIDS in PicoSAT

http://www.youtube.com/watch?v=M0jhFywLre8
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http://www.youtube.com/watch?v=MOjhFywLre8

Value selection heuristics

Based on the occurrences in the (reduced) formula

» examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

» not practical for CDCL solver due to watch pointers
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Value selection heuristics

Based on the occurrences in the (reduced) formula

» examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

» not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
> negative branching (early MiniSAT) [EenSorensson’03]
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Value selection heuristics

Based on the occurrences in the (reduced) formula

» examples: Jeroslow-Wang, Maximal Occurrence in clauses
of Minimal Size (MOMS), look-aheads

» not practical for CDCL solver due to watch pointers

Based on the encoding / consequently
> negative branching (early MiniSAT) [EenSorensson’03]

Based on the last implied value (phase-saving)
» introduced to CDCL [PipatsrisawatDarwiche'07]
» already used in local search [HirschKojevnikov'01]
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Heuristics: Phase-saving  [PipatsrisawatDarwiche’07]

Selecting the last implied value remembers solved components

J

. ' .

]
S
3

1000

Variable index

0 50000 100000 150000 ?01?000 250000 300000 350000 400000 0 50000 100000 150000 200000 250000
Decision number Decision number

negative branching phase-saving
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Restarts

Restarts in CDCL solvers:
» Counter heavy-tail behavior [GomesSelmanCrato'97]
» Unassign all variables but keep the (dynamic) heuristics
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Restarts

Restarts in CDCL solvers:
» Counter heavy-tail behavior [GomesSelmanCrato'97]
» Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh'99, LubySinclairZuckerman'93]
» Geometrical restart: e.g. 100, 150, 225, 333, 500, 750, . ..
» Luby sequence: e.g. 100, 100, 200, 100, 100, 200, 400, . ..
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Restarts

Restarts in CDCL solvers:
» Counter heavy-tail behavior [GomesSelmanCrato'97]
» Unassign all variables but keep the (dynamic) heuristics

Restart strategies: [Walsh'99, LubySinclairZuckerman'93]
» Geometrical restart: e.g. 100, 150, 225, 333, 500, 750, . ..
» Luby sequence: e.g. 100, 100, 200, 100, 100, 200, 400, . ..

Rapid restarts by reusing trail:
[vanderTakHeuleRamos'11]

» Partial restart same effect as full restart
» Optimal strategy Luby-1: 1,1,2,1,1,2,4,...
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Conflict-Clause Minimization
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Self-Subsumption

Use self-subsumption to shorten conflict clauses

CvI Dv-l (avbVvl) (avbVecV-l)
D ceh (avVbVec)

Conflict clause minimization is an important optimization.
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Self-Subsumption

Use self-subsumption to shorten conflict clauses

CvI Dv-l (avbVvl) (avbVecV-l)
D ceh (avVbVec)

Conflict clause minimization is an important optimization.
Use implication chains to further minimization:

..(mavb)(-bVc)(aVecVd)... =
.(maVvb)(=bVc)cVd)...
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Conflict-clause minimization [SérenssonBiere'09]

xp =1 x3=0

xg =1 x7=0
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Conflict-clause minimization [SérenssonBiere'09]

xp =1 x3=0

first unique

implication point
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Conflict-clause minimization [SérenssonBiere'09]

w0-1 @

(Xl V =xq V —xg V —|X10)
last unique

implication point

xp =1 x3=0

xg =1 x7=0
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Conflict-clause minimization [SérenssonBiere'09]

xp =1 x3=0

(—|X2 V x5V —ixg V X11)
reduced conflict clause
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Conflict-clause minimization [SérenssonBiere'09]

X3IO

(—\X2 Vx5 V Vxi1)
minimized conflict clause
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Conclusions: state-of-the-art CDCL solver

Key contributions to CDCL solvers:

» concept of conflict clauses (grasp)
[Marques-SilvaSakallah'96]

> restart strategies [GomesSC'97,LubySZ'93]

» 2-watch pointers and VSIDS (zChaff)
[MoskewiczMZZM'01]

» efficient implementation (Minisat) [EenSorensson’03]
» phase-saving (Rsat) [PipatsrisawatDarwiche’'07]
» conflict-clause minimization [SorenssonBiere'09]

+ Pre- and in-processing techniques
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