
Modeling in Alloy: Academia Model

Copyright 2001-18, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.
Produced by Cesare Tinelli and Laurence Pilard at the University of Iowa from notes originally developed by Matt Dwyer,
John Hatcliff and Rod Howell at Kansas State University. These notes are copyrighted materials and may not be used in
other course settings outside of the University of Iowa in their current form or modified form without the express written
permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid
for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

CS:5810
Formal Methods in Software

Engineering

“Academia” Modeling Example
• We will model an academic enterprise expressing

relationships between

– People
• Faculty

• Students

– Graduate

– Undergraduate

• Instructors – which can be grad students or faculty

– Courses

– Academic departments

– Personal ID numbers

2

How should we model these basic domains in Alloy?

Strategy

• Build and validate your model
incrementally
– Start with basic signatures and fields

–Add basic constraints

– Instantiate the model and study the results

–Probe the model with assertions

3

Strategy

• Add groups of features at a time
–New signatures and fields

–New constraints

–Confirm previous assertions

–Probe new features with assertions

4

Basic Components
• People

– Students: Undergrads and Grads

– Instructors: Faculty and Grads

• Courses

• Relationships

– One instructor teaches a course

– One or more students are taking a course

– Students can be waiting for for course

5

Academia Signatures

6

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}

sig Course {}

…

We are not specifying here that
instructors can only be graduate
students or faculty. We will do
that later with a “fact” constraint.

Academia Fields

• One instructor teaches a course
• 2 choices:

sig Instructor in Person {
teaches: Course

}
fact oneInstrucPerCourse {
all c:Course | one teaches.c

}

sig Course {
taughtby: one Instructor }

7

We cannot specify that
there is exactly one
instructor per course

We have to add
a fact specifying
this constraint

Course Fields

• One instructor teaches a course

• One or more students are taking a course

• Students can be waiting for for course

Course Fields

• One instructor teaches a course

• One or more students are taking a course

• Students can be waiting for for course

sig Course {

taughtby: one Instructor,

enrolled: some Student,

waitlist: set Student

}

9

Exactly one instructor per course.

One or more students
per course

Zero or more students per
course

More relations
• We may choose to define auxiliary relations:

teaches (transpose of taughtby)

taking (transpose of enrolled)

waitingfor (transpose of waitlist)

fun teaches: Instructor -> Course { ~taughtby }

fun taking: Student -> Course { ~enrolled }

fun waitingfor: Student -> Course { ~waitlist }

• Or not:

if i is an instructor, then

i.teaches <=> taughtby.i

10

Note

• Let i be an Instructor

• Let taughtby be the following binary relation

– taughtby: Course -> one Instructor

• The following expressions are equivalent and
give a set of courses as result

– taugthby.i

– i.~taugthby

– i[taugthby]

11

Academia Constraints
• All instructors are either faculty or graduate

students

– Was not expressed in set definition--although it
could have, with

sig Instructor in Graduate + Faculty

• No one is waiting for a course unless
someone is enrolled

• No graduate students teach a course that
they are enrolled in

12

Academia Constraints

13

fact {
-- All instructors are either Faculty or Graduate Students

-- no one is waiting for a course unless someone is enrolled

-- (This is actually superfluous. Why?)

-- graduate students do not teach courses they are enrolled in

or waiting to enroll in

}

Academia Constraints

14

fact {
-- All instructors are either Faculty or Graduate Students

all i: Instructor | i in Faculty + Graduate

-- no one is waiting for a course unless someone is enrolled

-- (This is actually superfluous. Why?)

all c: Course |

some c.waitlist => some c.enrolled

-- graduate students do not teach courses they are enrolled in

or waiting to enroll in

all c: Course |
c.taughtby !in c.enrolled + c.waitlist

}

Academia Realism Constraints

• There is a graduate student who is an
instructor

• There are at least:

– Two courses and

– Three undergraduates

15

Academia Realism Constraints

16

Can be added to the model as facts, or just put in a run

command to instruct the Alloy Analyzer to ignore
unrealistic instances

pred RealismConstraints [] {
-- there is a graduate student who is an instructor
some Graduate & Instructor

-- there are at least two courses
#Course > 1

-- there are at least three undergraduates
#Undergrad > 2

}

Academia Assertions

Let’s check if our model has these properties:

• No instructor is on the waitlist for a course
that he/she teaches

• No student is enrolled and on the waitlist for
the same course

17

Academia Assertions

18

-- no instructor is on the waitlist for a course that he/she teaches

-- no student is enrolled and on the waitlist for the same course

Academia Assertions

19

-- no instructor is on the waitlist for a course that he/she teaches

assert NoWaitingTeacher {
all c: Course |

no (c.taughtby & c.waitlist)
}

-- no student is enrolled and on the waitlist for the same course

assert NoEnrolledAndWaiting {
all c: Course |

no (c.enrolled & c.waitlist)
}

Exercises

• Load academia-1.als

• With realism conditions enabled, do any
instances exist in the default scopes?
– Manipulate the scopes as necessary to obtain an

instance under the realism conditions

• By looking at various sample instances, do you
consider the model to be underconstrained in
any way?

• Check assertions

20

Realism constraints
• No instances exist in the default scope

• Why ?

– default scope:
at most 3 tuples in each top-level signature

– entails: at most 3 Students

– some Graduate & Instructor
#Undergrad > 2

– entails: at least 4 Students

21

Realism Constraints

22

pred [] RealismConstraints
{
-- there is a graduate student who’s an instructor
some Graduate & Instructor

-- there are at least two courses
#Course > 1

-- there are at least three undergraduates
#Undergrad > 2

}

run RealismConstraints for 4

Instance
#Undergrad > 2 #Undergrad > 1

Instance found:

Signatures:

Course = {C0,C1}

Person = {U0,U1,G}

Faculty = {}

Student = {U0,U1,G}

Undergrad = {U0,U1}

Graduate = {G}

Instructor = {G}

Relations:

taughtby = {(C0,G),(C1,G)}

enrolled = {(C0,U1),(C1,U0)}

waitlist = {(C1,U1),(C1,U0)}

23

Need to relate enrollment
and waiting lists

Counter-example to assertion
Analyzing NoEnrolledAndWaiting ...

Counterexample found:

Signatures:

Course = {C}

Person = {G0,G1,F}

Faculty = {F}

Student = {G0,G1}

Undergrad = {}

Graduate = {G0,G1}

Instructor = {G0,G1}

Relations:

taughtby = {(C,G0)}

enrolled = {(C,G1)}

waitlist = {(C,G1)}

24

Academia Assertions

• No student is enrolled and on the waitlist for
the same course

– A counterexample has been found, hence

we transform this assertion into a fact

• No instructor is on the waitlist for a course
that he/she teaches

– No counterexample

25

Academia Assertions

• NoWaitingTeacher assertion

– No counterexample within the default scope

– No counterexample within the scope 4, 5, 6, 10

• Can we conclude that the assertion is valid?

– No! (It might have conterexamples but out of scope)

• But we take comfort in the

– small scope hypothesis: if an assertion is not valid, it
probably has a small counter-example

26

Why NoWaitingTeacher holds

• Assertion

-- no instructor is on the waitlist for a course that he/she teaches

assert NoWaitingTeacher {

all c: Course | no (c.taughtby & c.waitlist)

}

• Facts

-- (i) faculty are not students and (ii) graduate students do not

-- teach courses they are enrolled in or waiting to enroll in

all c: Course |

c.taughtby !in c.enrolled + c.waitlist

27

Extension 1

• Add an attribute for students

– Unique ID numbers

– This requires a new signature

• Add student transcripts

• Add prerequisite structure for courses

28

New Relations

29

sig Id {}

abstract sig Student extends Person {
id: one Id,
transcript: set Course

}

sig Graduate, Undergrad extends Student {}

sig Instructor in Person {}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student,
prerequisites: set Course

}

New Constraints

• Each Student is identified by one unique ID
– Exactly one ID per Student

already enforced by multiplicities

– No two distinct students have the same ID

has to be specified as a fact

• A student’s transcript contains a course only if it
contains the course’s prerequisites

• A course does not have itself as a prerequisite

• Realism: there exists a course with prerequisites
and with students enrolled

30

Academia Constraints

31

fact {

...

-- A student’s transcript contains a course only
-- if it contains the course’s prerequisites
all s: Student |

s.transcript.prerequisites in s.transcript

-- A course does not have itself as a prerequisite
all c: Course | c !in c.prerequisites

}

run {

...

-- there is a course with prerequisites and
-- enrolled students
some c: Course |

some c.prerequisites and some c.enrolled
}

not sufficient!

Academia Constraints

32

fact {

...

-- A student’s transcript contains a course only
-- if it contains the course’s prerequisites
all s: Student |

s.transcript.prerequisites in s.transcript

-- There are no cycles in the prerequisite dependencies
all c: Course | c !in c.^prerequisites

}

run {

...

-- there is a course with prerequisites and
-- enrolled students
some c: Course |

some c.prerequisites and some c.enrolled
}

Academia Assertions

• Students can only wait to be in a course for
which they already have the prerequisites

assert AllWaitsHavePrereqs {

all s: Student |

(waitlist.s).prerequisites in s.transcript

}

33

Exercises

• Load academia-2.als

• With realism conditions enabled, do any
instances exist in the default scopes?
– Manipulate the scopes as necessary to obtain an

instance under the realism conditions

• By looking at various sample instances, do
you consider the model to be
underconstrained in any way?

34

Counter-example
Analyzing AllWaitsHavePrereqs ...

Counterexample found:

Signatures:

Id = {Id0,Id1,Id2}

Course = {C0,C1}

Person = {U,G0,G1}

Faculty = {}

Student = {U,G0,G1}

Undergrad = {U}

Graduate = {G0,G1}

Instructor = {G0,G1}

Relations:

taughtby = {(C0,G0),(C1,G0)}

enrolled = {(C0,U),(C1,G1)}

waitlist = {(C1,U)}

prerequisites = {(C1,C0)}

transcript = {(G1,C0)}

id = {(U,Id0),(G0,Id2),(G1,Id1)}

35

U waits for the course C1
and

C0 is a prerequisite for C1
but

U does not have C0

Where is (U,C0)?

New constraint

• Old Assertion AllWaitsHavePrereqs

Students can wait only for those courses for which
they already have the prerequisites

• Old Fact

Students can have a course only if they already have
the prerequisites

• New Fact

Students can have, wait for or take a course only if
they already have the prerequisites

36

New constraint

• New Fact: A student can have, wait for or take a course only if
they already have the prerequisites

all s: Student |
(waitlist.s.prerequisites +
enrolled.s.prerequisites +
s.transcript.prerequisites)
in s.transcript

all s: Student |
(
waitlist.s + enrolled.s + s.transcript

).prerequisites in s.transcript

37

Extension 2

• Add Departments, with
– Instructors

– Courses

– Required courses

– Student majors

• Add Faculty-Grad student relationships
– Advisor

– Thesis committee

38

Department Relations

• Each instructor is in a single department

– Each department has at least one instructor

• Each department has some courses

– Courses are in a single department

• Each student has a single department as
his/her major

39

Faculty-Student Relations

• A graduate student has exactly one faculty
member as an advisor

• Faculty members serve on graduate students’
committees

40

New Relations
sig Faculty extends Person {

incommittee: set Graduate
}

abstract sig Student extends
Person {

major: one Department
}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department:
one Department

}

sig Department {
course: some Course,
required: some course

}

41

------------------------- Facts -------------------------

-- Each department has at least one instructor
all d: Department | some department.d

-- Each course is in a single department
all c: Course | one course.c

New Constraints

• Advisors are on their advisees’ committees

• Students are advised by faculty in their major

• Only faculty can teach required courses

• Faculty members only teach courses in their
department

• Required courses for a major are a subset of the
courses in that major

• Students must be enrolled in at least one course
from their major

42

Exercise

• Express as an Alloy fact each of the new
constraints in the previous slide

43

44

abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student,
prerequisites: set Course

}

sig Id {}

sig Department {
courses: some Course,
required: some Course

}

------------------ Signatures and Fields -----------------

Advisors are on their advisees’ committees

45

abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student,
prerequisites: set Course

}

sig Id {}

sig Department {
courses: some Course,
required: some Course

}

------------------ Signatures and Fields -----------------

Students are advised by faculty in their major

46

abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student,
prerequisites: set Course

}

sig Id {}

sig Department {
courses: some Course,
required: some Course

}

------------------ Signatures and Fields -----------------

Required courses for a major are a subset of the courses in that major

47

abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student,
prerequisites: set Course

}

sig Id {}

sig Department {
courses: some Course,
required: some Course

}

------------------ Signatures and Fields -----------------

Only faculty teach required courses

48

abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student,
prerequisites: set Course

}

sig Id {}

sig Department {
courses: some Course,
required: some Course

}

------------------ Signatures and Fields -----------------

Faculty members only teach courses in their department

49

abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student,
prerequisites: set Course

}

sig Id {}

sig Department {
courses: some Course,
required: some Course

}

------------------ Signatures and Fields -----------------

Students must be enrolled in at least one course from their major

50

abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student,
prerequisites: set Course

}

sig Id {}

sig Department {
courses: some Course,
required: some Course

}

------------------ Signatures and Fields -----------------

There are at least two departments and some required courses

51

abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student,
prerequisites: set Course

}

sig Id {}

sig Department {
courses: some Course,
required: some Course

}

------------------ Signatures and Fields -----------------

A student’s committee members are faculty in his/her major

Assertions

• Realism constraints: There are at least two
departments and some required courses

• Assertion: A student’s committee members
are faculty in his/her major

52

Exercises

• Load academia-3.als

• With realism conditions enabled, do any instances
exist in the default scopes?

• Manipulate the scopes as necessary to obtain an
instance under the realism conditions
– This requires some thought since constraints may interact

in subtle ways

– For example, adding a department requires at least one
faculty member for that department

• Can you think of any more questions about the
model?
– Formulate them as assertions and see if the properties are

already enforced by the constraints
53

