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“Academia” Modeling Example
• We will model an academic enterprise expressing 

relationships between 

– People 
• Faculty

• Students 

– Graduate

– Undergraduate

• Instructors – which can be grad students or faculty

– Courses

– Academic departments

– Personal ID numbers
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How should we model these basic domains in Alloy?



Strategy

• Build and validate your model 
incrementally
– Start with basic signatures and fields

–Add basic constraints

– Instantiate the model and study the results

–Probe the model with assertions
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Strategy

• Add groups of features at a time
–New signatures and fields

–New constraints

–Confirm previous assertions

–Probe new features with assertions 
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Basic Components
• People

– Students: Undergrads and Grads

– Instructors: Faculty and Grads

• Courses

• Relationships

– One instructor teaches a course

– One or more students are taking a course

– Students can be waiting for for course
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Academia Signatures
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abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}

sig Course {}

…

We are not specifying here that 
instructors can only be graduate 
students or faculty.  We will do 
that later with a “fact” constraint.



Academia Fields

• One instructor teaches a course
• 2 choices:

sig Instructor in Person {
teaches: Course

}
fact oneInstrucPerCourse {
all c:Course | one teaches.c

}

sig Course {
taughtby: one Instructor }
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We cannot specify that 
there is exactly one 
instructor per course

We have to add 
a fact specifying 
this constraint



Course Fields

• One instructor teaches a course

• One or more students are taking a course

• Students can be waiting for for course



Course Fields

• One instructor teaches a course

• One or more students are taking a course

• Students can be waiting for for course

sig Course {

taughtby: one Instructor,

enrolled: some Student,

waitlist: set Student

}
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Exactly one instructor per course.

One or more students 
per course

Zero or more students per 
course



More relations
• We may choose to define auxiliary relations:

teaches (transpose of taughtby)

taking (transpose of enrolled)

waitingfor (transpose of waitlist)

fun teaches: Instructor -> Course { ~taughtby }

fun taking: Student -> Course { ~enrolled }

fun waitingfor: Student -> Course { ~waitlist }

• Or not:

if i is an instructor, then 

i.teaches <=> taughtby.i
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Note

• Let i be an Instructor

• Let taughtby be the following binary relation

– taughtby: Course -> one Instructor 

• The following expressions are equivalent and 
give a set of courses as result

– taugthby.i

– i.~taugthby

– i[taugthby]
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Academia Constraints
• All instructors are either faculty or graduate

students

– Was not expressed in set definition--although it 
could have, with

sig Instructor in Graduate + Faculty

• No one is waiting for a course unless 
someone is enrolled

• No graduate students teach a course that 
they are enrolled in
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Academia Constraints
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fact {
-- All instructors are either Faculty or Graduate Students

-- no one is waiting for a course unless someone is enrolled

-- (This is actually superfluous. Why?)

-- graduate students do not teach courses they are enrolled in

or waiting to enroll in

}



Academia Constraints
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fact {
-- All instructors are either Faculty or Graduate Students

all i: Instructor | i in Faculty + Graduate

-- no one is waiting for a course unless someone is enrolled

-- (This is actually superfluous. Why?)

all c: Course | 

some c.waitlist => some c.enrolled

-- graduate students do not teach courses they are enrolled in

or waiting to enroll in

all c: Course | 
c.taughtby !in c.enrolled + c.waitlist

}



Academia Realism Constraints

• There is a graduate student who is an 
instructor

• There are at least:

– Two courses and

– Three undergraduates
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Academia Realism Constraints
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Can be added to the model as facts, or just put in a run 

command to instruct the Alloy Analyzer to ignore 
unrealistic instances

pred RealismConstraints [] {
-- there is a graduate student who is an instructor
some Graduate & Instructor 

-- there are at least two courses
#Course > 1

-- there are at least three undergraduates
#Undergrad > 2

} 



Academia Assertions

Let’s check if our model has these properties:

• No instructor is on the waitlist for a course
that he/she teaches

• No student is enrolled and on the waitlist for 
the same course
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Academia Assertions
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-- no instructor is on the waitlist for a course that he/she teaches

-- no student is enrolled and on the waitlist for the same course



Academia Assertions

19

-- no instructor is on the waitlist for a course that he/she teaches

assert NoWaitingTeacher {
all c: Course | 

no (c.taughtby & c.waitlist)
}

-- no student is enrolled and on the waitlist for the same course

assert NoEnrolledAndWaiting {
all c: Course | 

no (c.enrolled & c.waitlist)
}



Exercises

• Load academia-1.als

• With realism conditions enabled, do any 
instances exist in the default scopes?
– Manipulate the scopes as necessary to obtain an 

instance under the realism conditions

• By looking at various sample instances, do you 
consider the model to be underconstrained in 
any way?

• Check assertions
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Realism constraints
• No instances exist in the default scope

• Why ?

– default scope:
at most 3 tuples in each top-level signature

– entails: at most 3 Students

– some Graduate & Instructor 
#Undergrad > 2

– entails: at least 4 Students
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Realism Constraints

22

pred [] RealismConstraints
{
-- there is a graduate student who’s an instructor
some Graduate & Instructor 

-- there are at least two courses
#Course > 1

-- there are at least three undergraduates
#Undergrad > 2

}

run RealismConstraints for 4



Instance
#Undergrad > 2 #Undergrad > 1

Instance found:

Signatures:

Course = {C0,C1}

Person = {U0,U1,G}

Faculty = {}

Student = {U0,U1,G}

Undergrad = {U0,U1}

Graduate = {G}

Instructor = {G}

Relations:

taughtby = {(C0,G),(C1,G)}

enrolled = {(C0,U1),(C1,U0)}

waitlist = {(C1,U1),(C1,U0)}
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Need to relate enrollment 
and waiting lists



Counter-example to assertion
Analyzing NoEnrolledAndWaiting ...

Counterexample found:

Signatures:

Course = {C}

Person = {G0,G1,F}

Faculty = {F}

Student = {G0,G1}

Undergrad = {}

Graduate = {G0,G1}

Instructor = {G0,G1}

Relations:

taughtby = {(C,G0)}

enrolled = {(C,G1)}

waitlist = {(C,G1)}
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Academia Assertions

• No student is enrolled and on the waitlist for 
the same course

– A counterexample has been found, hence 

we transform this assertion into a fact

• No instructor is on the waitlist for a course
that he/she teaches

– No counterexample
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Academia Assertions

• NoWaitingTeacher assertion

– No counterexample within the default scope

– No counterexample within the scope 4, 5, 6, 10

• Can we conclude that the assertion is valid?

– No! (It might have conterexamples but out of scope)

• But we take comfort in the

– small scope hypothesis: if an assertion is not valid, it 
probably has a small counter-example
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Why NoWaitingTeacher holds

• Assertion

-- no instructor is on the waitlist for a course that he/she teaches

assert NoWaitingTeacher {

all c: Course | no (c.taughtby & c.waitlist)

}

• Facts

-- (i) faculty are not students and (ii) graduate students do not 

-- teach courses they are enrolled in or waiting to enroll in

all c: Course | 

c.taughtby !in c.enrolled + c.waitlist
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Extension 1

• Add an attribute for students

– Unique ID numbers

– This requires a new signature

• Add student transcripts

• Add prerequisite structure for courses
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New Relations
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sig Id {}

abstract sig Student extends Person {
id: one Id,
transcript: set Course

}

sig Graduate, Undergrad extends Student {}

sig Instructor in Person {}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}



New Constraints

• Each Student is identified by one unique ID
– Exactly one ID per Student 

already enforced by multiplicities

– No two distinct students have the same ID

has to be specified as a fact

• A student’s transcript contains a course only if it 
contains the course’s prerequisites

• A course does not have itself as a prerequisite

• Realism: there exists a course with prerequisites 
and with students enrolled
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Academia Constraints
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fact {

...

-- A student’s transcript contains a course only
-- if it contains the course’s prerequisites
all s: Student |

s.transcript.prerequisites in s.transcript

-- A course does not have itself as a prerequisite
all c: Course | c !in c.prerequisites

}

run {

...

-- there is a course with prerequisites and 
-- enrolled students
some c: Course |

some c.prerequisites and some c.enrolled
}

not sufficient!



Academia Constraints
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fact {

...

-- A student’s transcript contains a course only 
-- if it contains the course’s prerequisites
all s: Student |

s.transcript.prerequisites in s.transcript

-- There are no cycles in the prerequisite dependencies
all c: Course | c !in c.^prerequisites

}

run {

...

-- there is a course with prerequisites and
-- enrolled students
some c: Course |

some c.prerequisites and some c.enrolled
}



Academia Assertions

• Students can only wait to be in a course for 
which they already have  the prerequisites

assert AllWaitsHavePrereqs {

all s: Student | 

(waitlist.s).prerequisites in s.transcript

}
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Exercises

• Load academia-2.als

• With realism conditions enabled, do any 
instances exist in the default scopes?
– Manipulate the scopes as necessary to obtain an 

instance under the realism conditions

• By looking at various sample instances, do 
you consider the model to be 
underconstrained in any way?
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Counter-example
Analyzing AllWaitsHavePrereqs ...

Counterexample found:

Signatures:

Id = {Id0,Id1,Id2}

Course = {C0,C1}

Person = {U,G0,G1}

Faculty = {}

Student = {U,G0,G1}

Undergrad = {U}

Graduate = {G0,G1}

Instructor = {G0,G1}

Relations:

taughtby = {(C0,G0),(C1,G0)}

enrolled = {(C0,U),(C1,G1)}

waitlist = {(C1,U)}

prerequisites = {(C1,C0)}

transcript = {(G1,C0)}

id = {(U,Id0),(G0,Id2),(G1,Id1)}
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U waits for the course C1
and

C0 is a prerequisite for C1
but

U does not have C0

Where is (U,C0)?



New constraint

• Old Assertion AllWaitsHavePrereqs

Students can wait only for those courses for which 
they already have the prerequisites

• Old Fact

Students can have a course only if they already have 
the prerequisites

• New Fact

Students can have, wait for or take a course only if 
they already have the prerequisites

36



New constraint

• New Fact: A student can have, wait for or take a course only if 
they already have the prerequisites

all s: Student | 
(waitlist.s.prerequisites +
enrolled.s.prerequisites +
s.transcript.prerequisites)
in s.transcript

all s: Student | 
(
waitlist.s + enrolled.s + s.transcript

).prerequisites in s.transcript
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Extension 2

• Add Departments, with
– Instructors

– Courses 

– Required courses

– Student majors

• Add Faculty-Grad student relationships
– Advisor

– Thesis committee

38



Department Relations

• Each instructor is in a single department

– Each department has at least one instructor

• Each department has some courses

– Courses are in a single department

• Each student has a single department as 
his/her major
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Faculty-Student Relations

• A graduate student has exactly one faculty
member as an advisor

• Faculty members serve on graduate students’ 
committees
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New Relations
sig Faculty extends Person {

incommittee: set Graduate
}

abstract sig Student extends
Person {

major: one Department
}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department:
one Department

}

sig Department {
course: some Course,
required: some course

} 
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------------------------- Facts -------------------------

-- Each department has at least one instructor
all d: Department | some department.d

-- Each course is in a single department 
all c: Course | one course.c



New Constraints

• Advisors are on their advisees’ committees

• Students are advised by faculty in their major

• Only faculty can teach required courses

• Faculty members only teach courses in their 
department

• Required courses for a major are a subset of the 
courses in that major

• Students must be enrolled in at least one course 
from their major
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Exercise

• Express as an Alloy fact each of the new 
constraints in the previous slide
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abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate 

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty 

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}

sig Id {}

sig Department { 
courses: some Course, 
required: some Course 

}

------------------ Signatures and Fields -----------------

Advisors are on their advisees’ committees
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abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate 

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty 

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}

sig Id {}

sig Department { 
courses: some Course, 
required: some Course 

}

------------------ Signatures and Fields -----------------

Students are advised by faculty in their major
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abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate 

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty 

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}

sig Id {}

sig Department { 
courses: some Course, 
required: some Course 

}

------------------ Signatures and Fields -----------------

Required courses for a major are a subset of the courses in that major
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abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate 

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty 

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}

sig Id {}

sig Department { 
courses: some Course, 
required: some Course 

}

------------------ Signatures and Fields -----------------

Only faculty teach required courses
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abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate 

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty 

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}

sig Id {}

sig Department { 
courses: some Course, 
required: some Course 

}

------------------ Signatures and Fields -----------------

Faculty members only teach courses in their department
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abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate 

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty 

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}

sig Id {}

sig Department { 
courses: some Course, 
required: some Course 

}

------------------ Signatures and Fields -----------------

Students must be enrolled in at least one course from their major
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abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate 

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty 

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}

sig Id {}

sig Department { 
courses: some Course, 
required: some Course 

}

------------------ Signatures and Fields -----------------

There are at least two departments and some required courses
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abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate 

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty 

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student, 
prerequisites: set Course

}

sig Id {}

sig Department { 
courses: some Course, 
required: some Course 

}

------------------ Signatures and Fields -----------------

A student’s committee members are faculty in his/her major



Assertions

• Realism constraints: There are at least two 
departments and some required courses

• Assertion: A student’s committee members 
are faculty in his/her major
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Exercises

• Load academia-3.als

• With realism conditions enabled, do any instances 
exist in the default scopes?

• Manipulate the scopes as necessary to obtain an 
instance under the realism conditions
– This requires some thought since constraints may interact 

in subtle ways

– For example, adding a department requires at least one 
faculty member for that department

• Can you think of any more questions about the 
model?
– Formulate them as assertions and see if the properties are 

already enforced by the constraints
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