
CS:5810
Formal Methods in Software

Engineering

Introduction to Alloy

Part 2

1

Copyright 2001-18, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.
Created by Cesare Tinelli and Laurence Pilard at the University of Iowa from notes originally developed by Matt Dwyer,
John Hatcliff, Rod Howell at Kansas State University. These notes are copyrighted materials and may not be used in other
course settings outside of the University of Iowa in their current form or modified form without the express written
permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid
for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

Alloys Constraints

• Signatures and fields resp. define classes (of
atoms) and relations between them

• Alloy models can be refined further by adding
formulas expressing additional constraints
over those classes and relations

• Several operators are available to express both
logical and relational constraints

2CS:5810 -- Formal Methods in Software Engineering Fall 2018

Logical Operators

The usual logical operators are available, often
in two forms

– not ! (Boolean) negation

– and && conjunction

– or || disjunction

– implies => implication

– else alternative

– <=> equivalence

3CS:5810 -- Formal Methods in Software Engineering Fall 2018

Quantifiers

Alloy includes a rich collection of quantifiers

all x: S | F F holds for every x in S

some x: S | F F holds for some x in S

no x: S | F F holds for no x in S

lone x: S | F F holds for at most one x in S

one x: S | F F holds for exactly one x in S

4CS:5810 -- Formal Methods in Software Engineering Fall 2018

Predefined Sets in Alloy

There are three predefined set constants:
• none : empty set

• univ : universal set

• ident : identity relation

Example. For a model instance with just:
Man = {(M0),(M1),(M2)}

Woman = {(W0),(W1)}

the constants have the values
none = {}

univ = {(M0),(M1),(M2),(W0),(W1)}

ident ={(M0,M0),(M1,M1),(M2,M2),(W0,W0),(W1,W1)}

5CS:5810 -- Formal Methods in Software Engineering Fall 2018

Everything is a Set in Alloy

• There are no scalars
– We never speak directly about elements (or tuples) of

relations

– Instead, we can use singleton relations:

one sig Matt extends Person

• Quantified variables always denote singleton
relations:

all x : S | … x …

x = {t} for some element t of S

6CS:5810 -- Formal Methods in Software Engineering Fall 2018

Set Operators

+ union

& intersection

- difference

in subset

= equality

!= disequality

Example. Married men:

Married & Man

7CS:5810 -- Formal Methods in Software Engineering Fall 2018

Relational Operators

-> arrow (cross product)
~ transpose
. dot join
[] box join
^ transitive closure
* reflexive-transitive closure
<: domain restriction
:> image restriction
++ override

8CS:5810 -- Formal Methods in Software Engineering Fall 2018

Arrow Product

p -> q
• p and q are two relations

• p -> q is the relation you get by taking every combination
of a tuple from p and a tuple from q and concatenating
them (same as flat cross product)

Examples.
Name = {(N0),(N1)}

Addr = {(D0),(D1)}

Book = {(B0)}

Name -> Addr = {(N0,D0),(N0,D1),(N1,D0),(N1,D1)}

Book -> Name -> Addr =

{(B0,N0,D0),(B0,N0,D1),(B0,N1,D0),(B0,N1,D1)}

9CS:5810 -- Formal Methods in Software Engineering Fall 2018

Transpose

~ p
take the mirror image of the relation p,

i.e., reverse the order of atoms in each tuple

Example:
• p = {(a0,a1,a2,a3),(b0,b1,b2,b3)}

• ~p = {(a3,a2,a1,a0),(b3,b2,b1,b0)}

How would you use ~ to express the parents relation ?

~children

10CS:5810 -- Formal Methods in Software Engineering Fall 2018

Relational Composition (Join)

p.q

• p and q are two relations that are not both unary

• p.q is the relation you get by taking every
combination of a tuple from p and a tuple from q
and adding their join, if it exists

11CS:5810 -- Formal Methods in Software Engineering Fall 2018

How to join tuples ?

• What is the join of theses two tuples ?

– (a1,...,am)
– (b1,...,bn)

If am ≠ b1 then the join is undefined
If am = b1 then it is: (a1,...,am-1,b2,...,bn)

Examples.

– (a,b).(a,c,d) undefined
– (a,b).(b,c,d) = (a,c,d)

• What about (a) . (a) ?

t1.t2 is not defined if t1 and t2 are both unary tuples

12

Not defined !

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Examples

to maps a message to the name it should
be sent to

address maps names to addresses

to = {(M0,N0),(M0,N2)

(M1,N2),(M2,N3)}

address = {(N0,D0),

(N0,D1),(N1,D1),(N2,D3)}

to.address maps a message to the
addresses it should be sent to

to.address = {(M0,D0),

(M0,D1),(M0,D3),(M1,D3)}

13

M2M1M0

N3N2N1N0

D3D1D0

to
address
to.address

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Exercises

What’s the result of these join applications?

– {(a,b)}.{(c)}

– {(a)}.{(a,b)}

– {(a,b)}.{(b)}

– {(a)}.{(a,b,c)}

– {(a,b,c)}.{(c),(c,d),(b,c)}

– {(a,b)}.{(a,b,c)}

– {(a,b,c,d)}.{(d,e,f),(d,a)}

– {(a)}.{(b)}

14CS:5810 -- Formal Methods in Software Engineering Fall 2018

Exercises
• Given a relation addr of arity 4 that contains the tuple
b->n->a->t when book b maps name n to address a
at time t, and given a specific book B and a time T:

– addr = {(B0,N0,D0,T0),(B0,N0,D1,T1),
(B0,N1,D2,T0),(B0,N1,D2,T1),(B1,N2,D3,T0), (B1,N2,D4,T1)}

– T = {(T1)} B = {(B0)}

The expression B.addr.T is the name-address mapping
of book B at time T. What is the value of B.addr.T ?

• When p is a binary relation and q is a ternary relation,
what is the arity of the relation p.q ?

• Join is not associative, why ?
(i.e., (p.q).r and p.(q.r) are not always equivalent)

15CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example: Family Structure

abstract sig Person {

children: set Person,

siblings: set Person

}

sig Man, Woman extends Person {}

sig Married in Person {

spouse: one Married

}

16CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example: Family Structure

• How would you use join to find Matt’s children or
grandchildren ?

– matt.children // Matt’s children

– matt.children.children // Matt’s grandchildren

• What if we want to find Matt’s descendants?

17CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example: Family Structure

Every married man (woman) has a wife (husband)

all p: Married |

(p in Man => p.spouse in Woman)

and

(p in Woman => p.spouse in Man)

A spouse can’t be a sibling

no p: Married |
p.spouse in p.siblings

18CS:5810 -- Formal Methods in Software Engineering Fall 2018

Box Join

p[q]

– Semantically identical to dot join, but takes its arguments in
different order

p[q] ≡ q.p

Example: Matt’s children or grandchildren ?

– children[matt] // Matt’s children

– children.children[matt] // Matt’s grandchildren

– children[children[matt]] // Matt’s grandchildren

19CS:5810 -- Formal Methods in Software Engineering Fall 2018

Transitive Closure

^r
– Intuitively, the transitive closure of a relation r:SxS is what you get

when you keep navigating through r until you can’t go any farther

^r = r + r.r + r.r.r + …

20

(S0,S1)

(S1,S2)

(S2,S3)

(S4,S7)

r

(S0,S1)

(S1,S2)

(S2,S3)

(S4,S7) ^r
(S0,S2)

(S0,S3)

(S1,S3)

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example: Family Structure

• What if we want to find Matt’s ancestors or
descendants ?

– matt.^children // Matt’s descendants

– matt.^(~children) // Matt’s ancestors

• How would you express the constraint “No person
can be their own ancestor ”

no p: Person | p in p.^(~children)

21CS:5810 -- Formal Methods in Software Engineering Fall 2018

Reflexive-transitive closure

• *r = ^r + iden

22

(S0,S1)

(S1,S2)

(S2,S3)

(S4,S7)

r

*r

(S0,S1)

(S1,S2)

(S2,S3)

(S4,S7)

(S0,S2)

(S0,S3)

(S1,S3)
(S0,S0)

(S1,S1)

(S2,S2)

(S3,S3)

(S4,S4)

(S7,S7)

^r

iden

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Domain and Image Restrictions
The restriction operators are used to filter relations to a
given domain or image

If s is a set and r is a relation then
• s <: r contains tuples of r starting with an element in s

• r :> s contains tuples of r ending with an element in s

Examples.
Man = {(M0),(M1),(M2),(M3)}

Woman = {(W0),(W1)}

children = {(M0,M1),(M0,M2),(M3,W0),(W1,M1)}

// father-child

Man <: children = {(M0,M1),(M0,M2),(M3,W0)}

// parent-son

children :> Man = {(M0,M1),(M0,M2),(W1,M1)}

23CS:5810 -- Formal Methods in Software Engineering Fall 2018

Override

p ++ q

– p and q are two relations of arity two or more

– the result is like the union between p and q except that
tuples of q can replace tuples of p; any tuple in p that
matches a tuple in q starting with the same element is
dropped

– p ++ q = p – (domain(q) <: p) + q

Example
– oldAddr = {(N0,D0),(N1,D1),(N1,D2)}

– newAddr = {(N1,D4),(N3,D3)}

– oldAddr ++ newAddr = {(N0,D0),(N1,D4),(N3,D3)}

24CS:5810 -- Formal Methods in Software Engineering Fall 2018

Operator Precedence

||
<=>
=>
&&
!
= != in
+ -
++
&
->
<:
:>
[]
.
~ * ^

25

Low

High

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example: Family Structure

How would you express the constraint “No person can
have more than one father and mother ” ?

26CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example: Family Structure
How would you express the constraint “No person can have
more than one father and mother ” ?

all p: Person |
(lone (children.p & Man)) and
(lone (children.p & Woman))

Equivalently:

all p: Person |
(lone (Man <: children).p) and
(lone (Woman <: children).p)

This is an example of a negative constraint that is easier to
state positively (to make use of the lone operator)

27CS:5810 -- Formal Methods in Software Engineering Fall 2018

Set Comprehension

{ x : S | F }
– the set of values drawn from set S for which F

holds

How would use the comprehension notation to specify
the set of people that have the same parents as Matt?

(assuming Person has a parents field)

28CS:5810 -- Formal Methods in Software Engineering Fall 2018

Set Comprehension

{ x : S | F }
– the set of values drawn from set S for which F

holds

How would use the comprehension notation to specify
the set of people that have the same parents as Matt?

{ q: Person | q.parents = matt.parents }

(assuming Person has a parents field)

29CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example: Family Structure

30

How would you express the constraint “A person P’s
siblings are those people, other than P, with the same
parents as P”

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example: Family Structure

How would you express the constraint “A person P’s
siblings are those people, other than P, with the same
parents as P”

all p: Person |

p.siblings =

{q: Person | p.parents = q.parents} - p

31CS:5810 -- Formal Methods in Software Engineering Fall 2018

Let

You can factor expressions out:

let x = e | A

– Each occurrence of the variable x will be replaced by the
expression e in A

Example: Each married man (woman) has a wife (husband)

all p: Married |

let q = p.spouse |

(p in Man => q in Woman) and

(p in Woman => q in Man)

32CS:5810 -- Formal Methods in Software Engineering Fall 2018

Facts

Additional constraints on signatures and fields
are expressed in Alloy as facts

fact Name {

F1

F2

…

}

AA looks for instances of a model that also
satisfy all of its fact constraints

33CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example Facts

-- No person can be their own ancestor

-- At most one father and mother

-- a persons's siblings are other persons with the same
parents

34CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example Facts

-- No person can be their own ancestor
fact selfAncestor {

no p: Person | p in p.^parents
}

-- At most one father and mother
fact loneParents {

all p: Person | lone (p.parents & Man) and
lone (p.parents & Woman)

}

-- a persons's siblings are other persons with the same
parents

fact siblingsDefinition {
all p: Person |

p.siblings = {q: Person | p.parents = q.parents} - p
}

35CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example Facts

fact social {

-- Every married man (woman) has a wife (husband)

all p: Married |

let s = p.spouse |

(p in Man => s in Woman) and

(p in Woman => s in Man)

-- A spouse can't be a sibling

no p: Married | p.spouse in p.siblings

-- A person can't be married to a blood relative

no p: Married |

some (p.*parents & (p.spouse).*parents)

}

36CS:5810 -- Formal Methods in Software Engineering Fall 2018

Run Command

• Used to ask AA to generate an instance of the
model

• May include conditions

– Used to guide AA to pick model instances with certain
characteristics

– E.g., force certain sets and relations to be non-empty

– In this case, not part of the “true” specification

37CS:5810 -- Formal Methods in Software Engineering Fall 2018

Run Command

• To analyze a model, you add a run command
and instruct AA to execute it.

– the run command

tells the tool to search for an instance of the model

– you may also give a scope to signatures

bounds the size of instances that will be considered

• AA executes only the first run command in a
file

38CS:5810 -- Formal Methods in Software Engineering Fall 2018

Scope

• Limits the size of instances considered to
make instance finding feasible

• Represents the maximum number of elements
in a top-level signature

• Default value = 3 for each top-level signature

39CS:5810 -- Formal Methods in Software Engineering Fall 2018

Run Conditions

• We can use condition schemas to encode
realism constraints to e.g.,

– Force generated models to include at least one
married person, or one married man, etc.

40CS:5810 -- Formal Methods in Software Engineering Fall 2018

Run Example

41

Family Structure:

-- The simplest run command
-- The scope of every signature is 3
run {}

-- The scope scope of every signature is 5
run {} for 5

-- With conditions forcing each set to be populated
-- Setting the scope to 2
run {some Man && some Woman && some Married} for 2

-- Other scenarios
run {some Woman && no Man} for 7
run {some Man && some Married && no Woman}

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Exercises

• Load family-2.als

• Execute it

• Analyze the metamodel

• Look at the generated instance

• Does it look correct?

• What if anything would you change about it?

42CS:5810 -- Formal Methods in Software Engineering Fall 2018

Empty Signatures

• The analyzer’s algorithms prefer smaller
instances

– Often it produces empty signatures or otherwise
trivial instances

– It is useful to know that these instances satisfy the
constraints (since you may not want them)

• Usually, they do not illustrate the interesting
behaviors that are possible

43CS:5810 -- Formal Methods in Software Engineering Fall 2018

Exercises

• Load family-3.als

• Execute it

• Look at the generated instance

• Does it look correct?

• How can you produce

– two married couples?

– a non empty married relation and a non-empty
siblings relation ?

44CS:5810 -- Formal Methods in Software Engineering Fall 2018

Assertions

• Often we believe that our model entails certain

constraints that are not directly expressed

– e.g., some A && (A in B) entails some B

• We can define these constraints as assertions

and ask the analyzer to check if they hold

– e.g., assert myAssertion { some B }

check myAssertion

45CS:5810 -- Formal Methods in Software Engineering Fall 2018

Assertions

• If the constraint in an assertion does not hold,

the analyzer will produce a counterexample

instance

• If you expect the constraint to hold but it does

not, you can either

– make it into a fact, or

– refine your model until the assertion holds

46CS:5810 -- Formal Methods in Software Engineering Fall 2018

Assertions

• No person has a parent that is also a sibling

assert a1 { all p: Person |
no p.parents & p.siblings }

• A person’s siblings are his/her siblings’ siblings

assert a2 { all p: Person |
p.siblings = p.siblings.siblings }

• No person shares a common ancestor with his/her spouse (i.e.,
spouse isn’t related by blood)

assert a3 { no p: Married |

some (p.^parents & p.spouse.^parents) }

47CS:5810 -- Formal Methods in Software Engineering Fall 2018

Assertion Scopes

• You can specify a scope explicitly for any
signature, but:

– If a signature has been given a bound

– Then the bound of its supersignature or any
other extension of the same supersignature
can be determined

48CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example Scope
abstract sig Object {}
sig Directory extends Object {}
sig File extend Object {}
sig Alias in File {}

We consider an assertion A

• well-formed:
check A for 5 Object
check A for 4 Directory, 3 File
check A for 5 Object, 3 Directory
check A for 3 Directory, 3 Alias, 5 File

• ill-formed because it leaves the bound of File unspecified
check A for 3 Directory, 3 Alias

49CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example Scope
abstract sig Object {}

sig Directory extends Object {}

sig File extends Object {}

sig Alias in File {}

• check A for 5 [or] run {} for 5

places a bound of 5 on each top-level signature (in this
case just Object)

• check A for 5 but 3 Directory

additionally places a bound of 3 on Directory, and a
bound of 2 on File by implication

• check A for exactly 3 Directory, exactly 3 Alias,
5 File

limits File to at most 5 tuples, but requires that
Directory and Alias have exactly 3 tuples each

50CS:5810 -- Formal Methods in Software Engineering Fall 2018

Size Determination

Size determined in a signature declaration has priority
on size determined in scope

Example:

abstract sig Color {}

one sig red, yellow, green extends color {}

sig Pixel {color: one Color}

check A for 2

limits the signature Pixel to 2 elements, but assigns a
size of exactly 3 to Color

51CS:5810 -- Formal Methods in Software Engineering Fall 2018

Exercises

• Load family-4.als

• Execute it

• Look at the generated counter-examples

• Why is SiblingsSibling false?

• Why is NoIncest false?

52CS:5810 -- Formal Methods in Software Engineering Fall 2018

Problems with Assertions

Analyzing SiblingSiblings ...
Scopes: Person(3)
Counterexample found:

Person = {M,W0,W1}
Man = {M}
Woman = {W0,W1}
Married = {M,W1}

children = {(W0,W1)}
siblings = {(M,W0),(W0,M)}
spouse = {(M,W1),(W1,M)}

53

M.siblings = {W0}

M.siblings.siblings = {M}

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Problems with Assertions

Analyzing NoIncest ...
Scopes: Person(3)
Counterexample found:

Person = {M0,M1,W}
Man = {M0,M1}
Woman = {W}
Married = {M1,W}

children = {(M0,W),(W,M1)}
siblings = {}
spouse = {(M1,W),(W,M1)}

54

(M0 is an Ancestor of M1
and

M0 is an ancestor of W)
and

M1 and W are married

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Exercises

• Fix the specification in family-4.als

– If the model is underconstrained, add appropriate
constraints

– If the assertion is not correct, modify it

• Demonstrate that your fixes yield no counter-
examples

– Does varying the scope make a difference?

– Does this mean that the assertions hold for all
models?

55CS:5810 -- Formal Methods in Software Engineering Fall 2018

Functions and Predicates

Parametrized macros for terms and formulas
– Can be named and reused in different contexts

(facts, assertions and conditions of run)

– Can have zero or more parameters

– Used to factor out common patterns

Functions are good for:
– set expressions you want to reuse in different contexts

Predicates are good for:
– formulas you want to reuse in different contexts

56CS:5810 -- Formal Methods in Software Engineering Fall 2018

Functions
A named set expression, with zero or more parameters

Examples:

– The sisters function
fun sisters [p: Person] : Woman {

{w: Woman | w in p.siblings} }

– The parents relation
fun parents [] : Person -> Person {~children}

– Used in a formula

all p: Person | not (p in p.^parents or

p in sisters[p])

57CS:5810 -- Formal Methods in Software Engineering Fall 2018

Predicates

A named formula, with zero or more parameters

Predicates are not included when analyzing other schemas
(e.g., facts or assertions) unless they are applied to actual
arguments in the schemas being analyzed

Example:

– Two persons are blood relatives iff they have a common ancestor

pred BloodRelated [p: Person, q: Person] {
some (p.*parents & q.*parents)

}
– A person can't be married to a blood relative

no p: Married | BloodRelated[p, p.spouse]

58CS:5810 -- Formal Methods in Software Engineering Fall 2018

Predicate or Fact ?

• Predicates are (parametrized) definitions of
constraints

• Facts are assumed constraints

• Note: You can package constraints as predicates and
then use those predicates in facts

pred IsSingle[p: Person] { not (p in Married) }
pred IsFather[p: Man] { some p.children }

fact { some q: Man | IsSingle[q] && IsFather[q] }

59CS:5810 -- Formal Methods in Software Engineering Fall 2018

Exercises
• Define a predicate that characterizes the notion of

“in-law” for the family example

• Write a fact stating that a person is an in-law of their
in-laws

• Add these to the family example and run it through
AA

• Can you express this same notion in another way in
the Alloy model?

– Do so and run it through AA

– Which approach is better? Why?

60CS:5810 -- Formal Methods in Software Engineering Fall 2018

Exercises

• Add an assertion stating that a person has no
married in-laws

• What is the minimum scope for set Person for
which ACA can find a counterexample?

• How would you use ACA to prove that your
answer is truly the minimum scope?

• prove it!

61CS:5810 -- Formal Methods in Software Engineering Fall 2018

Acknowledgements

62

The family structure example is based on an example by

Daniel Jackson distributed with the Alloy Analyzer

CS:5810 -- Formal Methods in Software Engineering Fall 2018

