
CS:5810
Formal Methods in Software

Engineering

Introduction to Alloy

Part 1

1

Copyright 2001-18, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.
Created by Cesare Tinelli and Laurence Pilard at the University of Iowa from notes originally developed by Matt Dwyer,
John Hatcliff, Rod Howell at Kansas State University. These notes are copyrighted materials and may not be used in other
course settings outside of the University of Iowa in their current form or modified form without the express written
permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid
for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

Outline

• Introduction to basic Alloy constructs using a simple

example of a static model

– How to define sets, subsets, relations with multiplicity

constraints

– How to use Alloy’s quantifiers and predicate forms

• Basic use of the Alloy Analyzer 4 (AA)

– Loading, compiling, and analyzing a simple Alloy

specification

– Adjusting basic tool parameters

– Using the visualization tool to view instances of models

2CS:5810 -- Formal Methods in Software Engineering Fall 2018

Roadmap

Alloy: Rationale and Use Strategies

– What types of systems have been modeled with Alloy

– What types of questions can AA answer

– What is the purpose of each of the sections in an Alloy

specification

Alloy Specifications

– Parameterized conditionals

– Indexed relations

– Graphical representations of Alloy models

– More complex examples

3CS:5810 -- Formal Methods in Software Engineering Fall 2018

Alloy --- Why was it created?

Lightweight

small and easy to use, and capable of expressing common

properties tersely and naturally

Precise

having a simple and uniform mathematical semantics

Tractable

amenable to efficient and fully automated semantic

analysis (within scope limits)

4CS:5810 -- Formal Methods in Software Engineering Fall 2018

Alloy --- Comparison

UML

– Has similarities (graphical notation, OCL constraints) but it is

neither lightweight, nor precise

– UML includes many modeling notions omitted from Alloy (use-

cases, state-charts, code architecture specs)

– Alloy’s diagrams and relational navigation are inspired by UML

Z

– Precise, but intractable. Stylized typography makes it harder to

work with.

– Z is more expressive than Alloy, but more complicated

– Alloy’s set-based semantics is inspired by Z

5CS:5810 -- Formal Methods in Software Engineering Fall 2018

Alloy --- What is it used for?

Alloy is a textual modeling language aimed at

expressing structural and behaviorals properties

of software systems

It is not meant for modeling code architecture (a

la class diagrams in UML)

But there might be a close relationship between

the Alloy specification and an implementation in

an OO language

6CS:5810 -- Formal Methods in Software Engineering Fall 2018

Alloy --- Example Applications

The Alloy 4 distribution comes with several
example models that together illustrate the
use of Alloy’s constructs

Examples
– Specification of a distributed spanning tree

– Model of a generic file system

– Model of a generic file synchronizer

– Tower of Hanoi model

– …

7CS:5810 -- Formal Methods in Software Engineering Fall 2018

Alloy in General

Alloy is general enough that it can model

– any domain of individuals and

– relations between them

We will then start with a few simple examples
that are not necessarily about about software

8CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example: Family Structure

We want to…

• Model parent/child relationships as primitive relations

• Model spousal relationships as primitive relations

• Model relationships such as “siblings” as derived relations

• Enforce certain biological constraints via 1st-order predicates

(e.g., people have only one mother)

• Enforce certain social constraints via 1st-order predicates

(e.g., a wife isn’t a sibling)

• Confirm or refute the existence of certain derived relationships

(e.g., no one has a wife with whom he shares a parent)

9CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example: addressBook

An address book for an email client that
maintains a mapping from names to addresses

10

FriendBook

Ted -> ted@gmail.com
Ryan -> ryan@hotmail.com

WorkBook

Pilard -> lpilard@uiowa.edu
Ryan -> ryan@uiowa.edu

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Atoms and Relations

In Alloy, everything is built from atoms and relations

An atom is a primitive entity that is
– indivisible: it cannot be broken down into smaller parts

– immutable: its properties do not change over time

– uninterpreted: it does not have any built in property

(the way numbers do for example)

A relation is a structure that relates atoms. It is a set of
tuples, each tuple being a sequence of atoms

11CS:5810 -- Formal Methods in Software Engineering Fall 2018

Atoms and Relations: Examples

• Unary relations: a set of names, a set of addresses
and a set of books

Name = {(N0),(N1),(N2)}

Addr = {(D0),(D1)}

Book = {(B0),(B1)}

• A binary relation from names to addresses

address = {(N0,D0),(N1,D1)}

• A ternary relation from books to name to addresses

addr = {(B0,N0,D0), (B0,N1,D1), (B1,N1,D2)}

12

Atoms

Tuples

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Relations

Size of a relation: the number of tuples in the relation

Arity of a relation: the number of atoms in each tuple of
the relation

relations with arity 1, 2, and 3 are said to be unary, binary,
and ternary relations

Examples.

– relation of arity 1 and size 1: myName = {(N0)}

– relation of arity 2 and size 3: address = {(N0,D0),(N1,D1),(N2,D1))

13CS:5810 -- Formal Methods in Software Engineering Fall 2018

Main Components of Alloy Models

• Signatures and Fields

• Predicates and Functions

• Facts

• Assertions

• Commands and scopes

14CS:5810 -- Formal Methods in Software Engineering Fall 2018

Signatures and Fields

Signatures
– Describe classes of entities we want to reason about

– Sets defined in signatures are fixed (dynamic aspects can
be modeled by time-dependent relations)

Fields
– Define relations between signatures

Simple constraints
– Multiplicities on signatures

– Multiplicities on relations

15CS:5810 -- Formal Methods in Software Engineering Fall 2018

Signatures

• A signature introduces a set of atoms

• The declaration

sig A {}

introduces a set named A

• A set can be introduced as an extension of another;
thus

sig A1 extends A {}

introduces a set A1 that is a subset of A

16CS:5810 -- Formal Methods in Software Engineering Fall 2018

Signatures

sig A {}

sig B {}

sig A1 extends A {}

sig A2 extends A {}

• A1 and A2 are extensions of A

• A signature declared independently of any other one
is a top-level signature, e.g., A and B

• Extensions of the same signature are mutually
disjoint, as are top-level signatures

17

A
A1

A2

B

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Signatures

abstract sig A {}

sig B {}

sig A1 extends A {}

sig A2 extends A {}

• A signature can be introduced as a subset of another

sig A3 in A {}

• An abstract signature has no elements except those
belonging to its extensions or subsets

• All extensions of an abstract signature A form a
partition of A

18

A
A1 A2

B

A3

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Fields

• Relations are declared as fields of signatures

– Writing

sig A {f: e}

introduces a relation f of type A x e, where e is an
expression denoting a product of signatures)

• Examples: (with signatures A, B, C)

– Binary Relation:

sig A { f1: B } // f1 is a subset of A x B

– Ternary Relation:

sig A { f2: B -> C } // f2 is a subset of A x B x C

19CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example Signatures and Fields

20

Family Structure:

abstract sig Person {
children: Person,
siblings: Person

}

sig Man, Woman extends Person {}

sig Married in Person {
spouse: Married

}

Fields

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example: Family Structure

21

abstract sig Person {}
sig Man extends Person {}
sig Woman extends Person {}
sig Married in Person {}

Alloy Model Graphical Representation

Person

Man Woman

Married

extends

in

extends

Person

Man Woman

Married

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Model Instances

22

Person = {(P0),(P1),(P2)}
Man = {(P1),(P2)}
Married = {}
Woman = {(P0)}

A. E. Person = {(P0),(P1)}
Man = {(P0)}
Married = {(P1),(P0)}
Woman = {(P1)}

D.Person = {(P0),(P1)}
Man = {(P0)}
Married = {(P1)}
Woman = {}

The Alloy Analyzer will generate instances of models so that we can see
if they match our intentions.
Which of the following are instances of our current model?

abstract sig Person {}
sig Man extends Person {}
sig Woman extends Person {}
sig Married in Person {}

B.Person = {(P0),(P1),(P2)}
Man = {(P1),(P2)}
Married = {}
Woman = {(P0),(P1)}

C. Person = {(P0),(P1),(P2),(P3)}
Man = {(P0),(P1),(P2),(P3)}
Married = {(P2),(P3)}
Woman = {}

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example: Family Structure

23

abstract sig Person {
siblings: Person

}
sig Man extends Person {}
sig Woman extends Person {}
sig Married in Person {}

Alloy Model with siblings

Person = {(P0), (P1)}
Man = {(P0), (P1)}
Married = {}
Woman = {}

siblings = {(P0,P1), (P1,P0)}

Example instance

Intuition: P0 and P1 are siblings
siblings is a binary relation
it is a subset of Person x Person

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Multiplicities
Allow us to constrain the sizes of sets

– A multiplicity keyword placed before a signature
declaration constraints the number of element in the
signature’s set

m sig A {}

– We can also make multiplicities constraints on fields:
sig A {f: m e}
sig A {f: e1 m -> n e2}

There are four multiplicities
– set : any number
– some : one or more
– lone : zero or one
– one : exactly one

24CS:5810 -- Formal Methods in Software Engineering Fall 2018

Multiplicities: Examples

Without multiplicity:

A set of colors, each of which is red, yellow or green

abstract sig Color {}

sig Red, Yellow, Green extends Color {}

With multiplicity:

An enumeration of colors

abstract sig Color {}

one sig Red, Yellow, Green extends Color {}

25CS:5810 -- Formal Methods in Software Engineering Fall 2018

Multiplicities: Examples

• A file system in which each directory contains any number of
objects, and each alias points to exactly one object

abstract sig Object {}

sig Directory extends Object {contents: set Object}

sig File extends Object {}

sig Alias in File {to: one Object}

• The default multiplicity is one, so:

sig A {f: e} and sig A {f: one e}

are equivalent.

26

redundant

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Multiplicities: Examples

• A book maps names to addresses

– There is at most one address per Name

– An address is associated to at least one name

sig Name, Addr {}

sig Book {

addr: Name some -> lone Addr

}

27CS:5810 -- Formal Methods in Software Engineering Fall 2018

Multiplicities: Examples
• A collection of weather forecasts, each of which has a field
weather associating every city with exactly one weather
condition

sig Forecast {weather: City -> one Weather}
sig City {}
abstract sig Weather {}
one sig Rainy, Sunny, Cloudy extends Weather {}

• Instance:
City = {(Iowa City), (Chicago)}
Rainy = {(rainy)}
Sunny = {(sunny)}
Cloudy = {(cloudy)}
Forecast = {(f1), (f2)}
weather = { (f1, Iowa City, rainy), (f1, Chicago, rainy),

(f2, Iowa City, rainy), (f2, Chicago, sunny) }

28CS:5810 -- Formal Methods in Software Engineering Fall 2018

Multiplicities and Binary Relations

• sig S {f: lone T}
– says that, for each element s of S, f maps s to at most a

single value in T

• Potential instances:

29

s1

s2

s3

s4

t1

t2

t3

t4

C.s1

s2

s3

s4

t1

t2

t3

t4

A. s1

s2

s3

s4

t1

t2

t3

t4

B. s1

s2

s3

s4

t1

t2

t3

t4

D.

Conventional name: partial function

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Multiplicities and Binary Relations

• sig S {f: one T}
– says that, for each element s of S, f maps s to exactly one

value in T

• Potential instances:

30

s1

s2

s3

s4

t1

t2

t3

t4

C.s1

s2

s3

s4

t1

t2

t3

t4

A. s1

s2

s3

s4

t1

t2

t3

t4

B. s1

s2

s3

s4

t1

t2

t3

t4

D.

Conventional name: total function

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Multiplicities and Ternary Relations

• sig S {f: T -> one V}
– For each element s of S, over the triples that start with s:

f maps each T-element to exactly one V-element

• Potential instances:

31

t1

t2

t3

t4

v1

v2

v3

v4

s1

s2

C.A. t1

t2

t3

t4

v1

v2

v3

v4

s1

t1

t2

t3

t4

v1

v2

v3

v4

s1

D.B. t1

t2

t3

t4

v1

v2

v3

v4

s1

s2

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Multiplicities and Ternary Relations

• sig S {f: T lone -> V}
– For each element s of S, over the triples that start with s:

f maps at most one T-element to the same V-element

• Potential instances:

32

t1

t2

t3

t4

v1

v2

v3

v4

s1

s2

C.t1

t2

t3

t4

v1

v2

v3

v4

s1

B. A. t1

t2

t3

t4

v1

v2

v3

v4

s1

t1

t2

t3

t4

v1

v2

v3

v4

s1

s2

D.

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Multiplicities and Relations

• Other kinds of relational structures can be specified
using multiplicities

• Examples:

– sig S {f: some T} … total relation

– sig S {f: set T} … partial relation

– sig S {f: T set -> set V}

– sig S {f: T one -> V}

– …

33CS:5810 -- Formal Methods in Software Engineering Fall 2018

Cardinality Constraints

Multiplicities can also be applied to whole
expressions denoting relations

– some e e is non-empty

– no e e is empty

– lone e e has at most one tuple

– one e e has exactly one tuple

34CS:5810 -- Formal Methods in Software Engineering Fall 2018

Example: Family Structure

• How would you use multiplicities to define the
children relation?

sig Person {children: set Person}

– Intuition: each person has zero or more children

• How would you use multiplicities to define the spouse
relation?

sig Married {spouse: one Married}

– Intuition: each married person has exactly one spouse

35CS:5810 -- Formal Methods in Software Engineering Fall 2018

Summarizing

36

abstract sig Person {
children: set Person,
siblings: set Person

}

sig Man, Woman extends Person {}

sig Married in Person {
spouse: one Married

}

Alloy Model

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Exercises

• Start the Alloy Analyzer:

• Load file family-1.als from the Resources
section of the course website

• Execute it

• Analyze the model instance

• Look at the generated instance

• Does it look correct?

• What, if anything, would you change about it?

37CS:5810 -- Formal Methods in Software Engineering Fall 2018

Model Instance
Instance found:

Person = {Man0,Man1,Man2}
Man = {Man0,Man1,Man2}
Woman = {}
Married = {Man0,Man1,Man2}

children = { (Man0,Man0),(Man0,Man1),
(Man1,Man0),
(Man2,Man1), (Man2,Man2)

}
siblings = { (Man0,Man0),(Man0,Man1),

(Man1,Man0),(Man1,Man2),
(Man2,Man2)

}
spouse = {(Man1,Man0),(Man0,Man2),(Man2,Man0)}

38CS:5810 -- Formal Methods in Software Engineering Fall 2018

Man can be his own child ?
Instance found:

Person = {Man0,Man1,Man2}
Man = {Man0,Man1,Man2}
Woman = {}
Married = {Man0,Man1,Man2}

children = { (Man0,Man0),(Man0,Man1),
(Man1,Man0),
(Man2,Man1), (Man2,Man2)

}
siblings = { (Man0,Man0),(Man0,Man1),

(Man1,Man0),(Man1,Man2),
(Man2,Man2)

}
spouse = {(Man1,Man0),(Man0,Man2),(Man2,Man0)}

39CS:5810 -- Formal Methods in Software Engineering Fall 2018

Multiple Fathers?
Instance found:

Person = {Man0,Man1,Man2}
Man = {Man0,Man1,Man2}
Woman = {}
Married = {Man0,Man1,Man2}

children = { (Man0,Man0),(Man0,Man1),
(Man1,Man0),
(Man2,Man1), (Man2,Man2)

}
siblings = { (Man0,Man0),(Man0,Man1),

(Man1,Man0),(Man1,Man2),
(Man2,Man2)

}
spouse = {(Man1,Man0),(Man0,Man2),(Man2,Man0)}

40CS:5810 -- Formal Methods in Software Engineering Fall 2018

Own-Siblings?
Instance found:

Person = {Man0,Man1,Man2}
Man = {Man0,Man1,Man2}
Woman = {}
Married = {Man0,Man1,Man2}

children = { (Man0,Man0),(Man0,Man1),
(Man1,Man0),
(Man2,Man1), (Man2,Man2)

}
siblings = { (Man0,Man0),(Man0,Man1),

(Man1,Man0),(Man1,Man2),
(Man2,Man2)

}
spouse = {(Man1,Man0),(Man0,Man2),(Man2,Man0)}

41CS:5810 -- Formal Methods in Software Engineering Fall 2018

Asymmetric Siblings?
Instance found:

Person = {Man0,Man1,Man2}
Man = {Man0,Man1,Man2}
Woman = {}
Married = {Man0,Man1,Man2}

children = { (Man0,Man0),(Man0,Man1),
(Man1,Man0),
(Man2,Man1), (Man2,Man2)

}
siblings = { (Man0,Man0),(Man0,Man1),

(Man1,Man0),(Man1,Man2),
(Man2,Man2)

}
spouse = {(Man1,Man0),(Man0,Man2),(Man2,Man0)}

42

No (Man2,Man1)?

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Children-Siblings?
Instance found:

Person = {Man0,Man1,Man2}
Man = {Man0,Man1,Man2}
Woman = {}
Married = {Man0,Man1,Man2}

children = { (Man0,Man0),(Man0,Man1),
(Man1,Man0),
(Man2,Man1), (Man2,Man2)

}
siblings = { (Man0,Man0),(Man0,Man1),

(Man1,Man0),(Man1,Man2),
(Man2,Man2)

}
spouse = {(Man1,Man0),(Man0,Man2),(Man2,Man0)}

43CS:5810 -- Formal Methods in Software Engineering Fall 2018

Asymmetric Marriage?
Instance found:

Person = {Man0,Man1,Man2}
Man = {Man0,Man1,Man2}
Woman = {}
Married = {Man0,Man1,Man2}

children = { (Man0,Man0),(Man0,Man1),
(Man1,Man0),
(Man2,Man1), (Man2,Man2)

}
siblings = { (Man0,Man0),(Man0,Man1),

(Man1,Man0),(Man1,Man2),
(Man2,Man2)

}
spouse = {(Man1,Man0),(Man0,Man2),(Man2,Man0)}

44

where is (Man0,Man1)?

CS:5810 -- Formal Methods in Software Engineering Fall 2018

Model Weaknesses

• The model is underconstrained
– It doesn’t match our domain knowledge

– We can add constraints to enrich the model

• Under-constrained models are common early
on in the development process
– AA gives us quick feedback on weaknesses in our

model

– We can incrementally add constraints until we are
satisfied with it

45CS:5810 -- Formal Methods in Software Engineering Fall 2018

Adding Constraints

We’d like to enforce the following constraints which
are simply matters of biology

– No person can be their own parent (or more
generally, their own ancestor)

– No person can have more than one father or
mother

– A person’s siblings are those with the same
parents

46CS:5810 -- Formal Methods in Software Engineering Fall 2018

Adding Constraints

• We’d like to enforce the following social
constraints

– The spouse relation is symmetric

– A man’s wife cannot be one of his siblings

47CS:5810 -- Formal Methods in Software Engineering Fall 2018

