
Métodos Formais
2022.2

Introduction to Alloy: Constraints

Áreas de Teoria e de Linguagens de Programação DCC/UFMG

Alloy Constraints

Signatures and fields resp. define classes (of atoms) and relations between
them

Alloy models can be refined further by adding formulas expressing additional
constraints over those classes and relations

Several operators are available to express both logical and relational
constraints

Introduction to Alloy: Constraints 1 / 32

Logical operators

The usual logical operators are available, often in two forms

− not ! (Boolean) n e g a t i o n

− and && c o n j u n c t i o n

− or | | d i s j u n c t i o n

− i m p l i e s => i m p l i c a t i o n

− e l s e a l t e r n a t i v e

− <=> e q u i v a l e n c e

Introduction to Alloy: Constraints 2 / 32

Quantifiers

Alloy includes a rich collection of quantifiers

a l l x : S | F F h o l d s f o r e v e r y x i n S
some x : S | F F h o l d s f o r some x i n S
no x : S | F F h o l d s f o r no x i n S
lone x : S | F F h o l d s f o r at most one x i n S
one x : S | F F h o l d s f o r e x a c t l y one x i n S

Introduction to Alloy: Constraints 3 / 32

Predefined sets in Alloy

There are three predefined set constants:

none : empty set
univ : universal set
ident : identity relation

Example. For a model instance with just:

Man = {(M0) , (M1) , (M2)}
Woman = {(W0) , (W1)}

the constants have the values

none = {}
univ = {(M0) , (M1) , (M2) , (W0) , (W1)}
ident ={(M0,M0) , (M1,M1) , (M2,M2) , (W0,W0) , (W1,W1)}

Introduction to Alloy: Constraints 4 / 32

Everything is a Set in Alloy

There are no scalars

We never speak directly about elements (or tuples) of relations

Instead, we can use singleton relations:

one s i g Matt extends Person

Quantified variables always denote singleton relations:

a l l x : S | . . . x . . .

x = {t} for some element t of S

Introduction to Alloy: Constraints 5 / 32

Set operators

+ union
& i n t e r s e c t i o n
− d i f f e r e n c e
i n s u b s e t
= e q u a l i t y
!= d i s e q u a l i t y

Example. Married men:

M a r r i e d & Man

Introduction to Alloy: Constraints 6 / 32

Relational operators

−> arrow (c r o s s p r o d u c t)
˜ t r a n s p o s e
. dot j o i n
[] box j o i n
ˆ t r a n s i t i v e c l o s u r e
* r e f l e x i v e − t r a n s i t i v e c l o s u r e
<: domain r e s t r i c t i o n
:> image r e s t r i c t i o n
++ o v e r r i d e

Introduction to Alloy: Constraints 7 / 32

Relational composition (Join)

p . q

p and q are two relations that are not both unary

p.q is the relation you get by taking every combination of a tuple from p and
a tuple from q and adding their join, if it exists

Introduction to Alloy: Constraints 8 / 32

How to join tuples?

What is the join of theses two tuples ?

(a1 , . . . , am)
(b1 , . . . , bn)

If am 6= b1, then join is undefined

If am = b1, then it is

(a1 , . . . , am−1,b2 , . . . , bn)

Examples.

(a , b) . (a , c , d) u n d e f i n e d
(a , b) . (b , c , d) = (a , c , d)

What about (a).(a)?

Not defined!

t1.t2 is not defined if t1 and t2 are both unary tuples

Introduction to Alloy: Constraints 9 / 32

How to join tuples?

What is the join of theses two tuples ?

(a1 , . . . , am)
(b1 , . . . , bn)

If am 6= b1, then join is undefined

If am = b1, then it is

(a1 , . . . , am−1,b2 , . . . , bn)

Examples.

(a , b) . (a , c , d) u n d e f i n e d
(a , b) . (b , c , d) = (a , c , d)

What about (a).(a)? Not defined!

t1.t2 is not defined if t1 and t2 are both unary tuples

Introduction to Alloy: Constraints 9 / 32

Example: family structure

abstract s i g Person {
c h i l d r e n : set Person ,
s i b l i n g s : set Person

}
s i g Man , Woman extends Person {}
one s i g Matt i n Man {}
s i g M a r r i e d i n Person {

s p o u s e : one M a r r i e d
}

How would you use join to find Matt’s children or grandchildren ?

Matt . c h i l d r e n −− Matt ’ s c h i l d r e n
Matt . c h i l d r e n . c h i l d r e n −− Matt ’ s g r a n d c h i l d r e n

What if we want to find Matt’s descendants?

Introduction to Alloy: Constraints 10 / 32

Example: family structure

abstract s i g Person {
c h i l d r e n : set Person ,
s i b l i n g s : set Person

}
s i g Man , Woman extends Person {}
one s i g Matt i n Man {}
s i g M a r r i e d i n Person {

s p o u s e : one M a r r i e d
}

How would you use join to find Matt’s children or grandchildren ?

Matt . c h i l d r e n −− Matt ’ s c h i l d r e n
Matt . c h i l d r e n . c h i l d r e n −− Matt ’ s g r a n d c h i l d r e n

What if we want to find Matt’s descendants?

Introduction to Alloy: Constraints 10 / 32

Example: family structure

How would you model the constraint:

Every married man (woman) has a wife (husband)

a l l p : M a r r i e d |
(p i n Man => p . s p o u s e i n Woman)
and
(p i n Woman => p . s p o u s e i n Man)

A spouse can’t be a sibling

no p : M a r r i e d |
p . s p o u s e i n p . s i b l i n g s

Introduction to Alloy: Constraints 11 / 32

Example: family structure

How would you model the constraint:

Every married man (woman) has a wife (husband)

a l l p : M a r r i e d |
(p i n Man => p . s p o u s e i n Woman)
and
(p i n Woman => p . s p o u s e i n Man)

A spouse can’t be a sibling

no p : M a r r i e d |
p . s p o u s e i n p . s i b l i n g s

Introduction to Alloy: Constraints 11 / 32

Example: family structure

How would you model the constraint:

Every married man (woman) has a wife (husband)

a l l p : M a r r i e d |
(p i n Man => p . s p o u s e i n Woman)
and
(p i n Woman => p . s p o u s e i n Man)

A spouse can’t be a sibling

no p : M a r r i e d |
p . s p o u s e i n p . s i b l i n g s

Introduction to Alloy: Constraints 11 / 32

Box Join

p [q]

Semantically identical to dot join, but takes its arguments in different order

p [q] <=> q . p

Example: Matt’s children or grandchildren?

c h i l d r e n [Matt] −− Matt ’ s c h i l d r e n
c h i l d r e n [c h i l d r e n [Matt]] −− Matt ’ s g r a n d c h i l d r e n

Introduction to Alloy: Constraints 12 / 32

Box Join

p [q]

Semantically identical to dot join, but takes its arguments in different order

p [q] <=> q . p

Example: Matt’s children or grandchildren?

c h i l d r e n [Matt] −− Matt ’ s c h i l d r e n
c h i l d r e n [c h i l d r e n [Matt]] −− Matt ’ s g r a n d c h i l d r e n

Introduction to Alloy: Constraints 12 / 32

Transpose

˜p

Take the mirror image of the relation p

The reverse the order of atoms in each tuple

p [q] <=> q . p

Example:

p = {(a0 , a1 , a2 , a3) , (b0 , b1 , b2 , b3)}
˜p = {(a3 , a2 , a1 , a0) , (b3 , b2 , b1 , b0)}

Example: Matt’s parents or grand parents?

˜ c h i l d r e n [Matt] −− Matt ’ s p a r e n t s
˜ c h i l d r e n [˜ c h i l d r e n [Matt]] −− Matt ’ s g r a n d p a r e n t s

Introduction to Alloy: Constraints 13 / 32

Transpose

˜p

Take the mirror image of the relation p

The reverse the order of atoms in each tuple

p [q] <=> q . p

Example:

p = {(a0 , a1 , a2 , a3) , (b0 , b1 , b2 , b3)}
˜p = {(a3 , a2 , a1 , a0) , (b3 , b2 , b1 , b0)}

Example: Matt’s parents or grand parents?

˜ c h i l d r e n [Matt] −− Matt ’ s p a r e n t s
˜ c h i l d r e n [˜ c h i l d r e n [Matt]] −− Matt ’ s g r a n d p a r e n t s

Introduction to Alloy: Constraints 13 / 32

Transitive Closure

ˆ r

Intuitively, the transitive closure of a relation r: S x S is what you get when
you keep navigating through r until you can’t go any farther

ˆ r = r + r . r + r . r . r + . . .

Introduction to Alloy: Constraints 14 / 32

Example: family structure

What if we want to find Matt’s ancestors or descendants ?

Matt . ˆ c h i l d r e n // Matt ’ s d e s c e n d a n t s
Matt . ˆ (˜ c h i l d r e n) // Matt ’ s a n c e s t o r s

How to express the constraint “No person can be their own ancestor?”

no p : Person | p i n p . ˆ (˜ c h i l d r e n)

Introduction to Alloy: Constraints 15 / 32

Example: family structure

What if we want to find Matt’s ancestors or descendants ?

Matt . ˆ c h i l d r e n // Matt ’ s d e s c e n d a n t s
Matt . ˆ (˜ c h i l d r e n) // Matt ’ s a n c e s t o r s

How to express the constraint “No person can be their own ancestor?”

no p : Person | p i n p . ˆ (˜ c h i l d r e n)

Introduction to Alloy: Constraints 15 / 32

Example: family structure

What if we want to find Matt’s ancestors or descendants ?

Matt . ˆ c h i l d r e n // Matt ’ s d e s c e n d a n t s
Matt . ˆ (˜ c h i l d r e n) // Matt ’ s a n c e s t o r s

How to express the constraint “No person can be their own ancestor?”

no p : Person | p i n p . ˆ (˜ c h i l d r e n)

Introduction to Alloy: Constraints 15 / 32

Reflexive-transitive Closure

* r = ˆ r + i d e n

Intuitively, the transitive closure of a relation r: S x S is what you get when
you keep navigating through r until you can’t go any farther

* r = i d e n + r + r . r + r . r . r + . . .

Introduction to Alloy: Constraints 16 / 32

Arrow Product

p −> q

p and q are two relations

p -> q is the relation you get by taking every combination of a tuple from p
and a tuple from q and concatenating them (same as flat cross product)

Example

Name = {(N0) , (N1)}
Addr = {(D0) , (D1)}
Book = {(B0)}

Name −> Addr = {(N0 , D0) , (N0 , D1) , (N1 , D0) , (N1 , D1)}
Book −> Name −> Addr =

{(B0 , N0 , D0) , (B0 , N0 , D1) , (B0 , N1 , D0) , (B0 , N1 , D1)}

Introduction to Alloy: Constraints 17 / 32

Domain and Image restrictions

The restriction operators are used to filter relations to a given domain or
image

If s is a set and r is a relation then

s <: r contains tuples of r starting with an element in s
r :> s contains tuples of r ending with an element in s

Examples

Man = {(M0) , (M1) , (M2) , (M3)}
Woman = {(W0) , (W1)}
c h i l d r e n = {(M0,M1) , (M0,M2) , (M3,W0) , (W1,M1)}
// f a t h e r−c h i l d
Man <: c h i l d r e n = {(M0,M1) , (M0,M2) , (M3,W0)}
// parent−son
c h i l d r e n :> Man = {(M0,M1) , (M0,M2) , (W1,M1)}

Introduction to Alloy: Constraints 18 / 32

Override

p ++ q

p and q are two relations of arity two or more

the result is like the union between p and q except that tuples of q can
replace tuples of p; any tuple in p that matches a tuple in q starting with the
same element is dropped

p ++ q = p − (domain (q) <: p) + q

Example

o ldAddr = {(N0 , D0) , (N1 , D1) , (N1 , D2)}
newAddr = {(N1 , D4) , (N3 , D3)}
o ldAddr ++ newAddr = {(N0 , D0) , (N1 , D4) , (N3 , D3)}

Introduction to Alloy: Constraints 19 / 32

Operator precederce

From lower to higher:

| |
<=>
=>
&&
!
= != i n
+ −
++
&
−>
<:
:>
[]
.
˜ * ˆ

Introduction to Alloy: Constraints 20 / 32

Set Comprehension

{ x : S | F }

the set of values drawn from set S for which F holds

How would use the comprehension notation to specify the set of people that
have the same parents as Matt?

{ q : Person | q . ˜ c h i l d r e n = matt . ˜ c h i l d r e n }

Introduction to Alloy: Constraints 21 / 32

Set Comprehension

{ x : S | F }

the set of values drawn from set S for which F holds

How would use the comprehension notation to specify the set of people that
have the same parents as Matt?

{ q : Person | q . ˜ c h i l d r e n = matt . ˜ c h i l d r e n }

Introduction to Alloy: Constraints 21 / 32

Example: family structure

How to express the constraint “A person P’s siblings are those people, other than
P, with the same parents as P”

a l l p : Person |
p . s i b l i n g s =
{q : Person | p . ˜ c h i l d r e n = q . ˜ c h i l d r e n } − p

Introduction to Alloy: Constraints 22 / 32

Example: family structure

How to express the constraint “A person P’s siblings are those people, other than
P, with the same parents as P”

a l l p : Person |
p . s i b l i n g s =
{q : Person | p . ˜ c h i l d r e n = q . ˜ c h i l d r e n } − p

Introduction to Alloy: Constraints 22 / 32

Functions and Predicates

Parametrized macros for terms and formulas

Can be named and reused in different contexts (facts, assertions and
conditions of run)

Can have zero or more parameters

Used to factor out common patterns

Functions are good for set expressions you want to reuse in different contexts

Predicates are good for formulas you want to reuse in different contexts

Introduction to Alloy: Constraints 23 / 32

Functions

A named set expression, with zero or more parameters

The parents relation:

fun s i s t e r s [p : Person] : Woman {
{w: Woman | w i n p . s i b l i n g s } }

fun p a r e n t s [] : Person −> Person {˜ c h i l d r e n }

Example in a formula:

a l l p : Person |
p . s i b l i n g s =
{q : Person | p . p a r e n t s = q . p a r e n t s } − p

Introduction to Alloy: Constraints 24 / 32

Predicates

A named formula, with zero or more parameters

The parents relation:

pred B l o o d R e l a t e d [p : Person , q : Person] {
some (p .* p a r e n t s & q .* p a r e n t s)

}

Example in a formula:

no p : M a r r i e d | B l o o d R e l a t e d [p , p . s p o u s e]

Introduction to Alloy: Constraints 25 / 32

Let

l e t x = e | A

You can factor expressions out

Each occurrence of the variable x will be replaced by the expression e in A

Example: “Each married man (woman) has a wife (husband)”

a l l p : M a r r i e d |
l e t q = p . s p o u s e |

(p i n Man => q i n Woman) and
(p i n Woman => q i n Man)

Introduction to Alloy: Constraints 26 / 32

Facts

Additional constraints on signatures and fields are expressed in Alloy as facts

fac t Name {
F1
F2
. . .

}

AA looks for instances of a model that also satisfy all of its facts

Introduction to Alloy: Constraints 27 / 32

Example Facts

No person can be their own ancestor

fac t s e l f A n c e s t o r {
no p : Person | p i n p . ˆ p a r e n t s

}

At most one father and mother

fac t l o n e P a r e n t s {
a l l p : Person | lone (p . p a r e n t s & Man) and

lone (p . p a r e n t s & Woman)
}

a persons’s siblings are other persons with the same parents

fac t s i b l i n g s D e f i n i t i o n {
a l l p : Person |

p . s i b l i n g s =
{q : Person | p . p a r e n t s = q . p a r e n t s } − p

}

Introduction to Alloy: Constraints 28 / 32

Example Facts

No person can be their own ancestor

fac t s e l f A n c e s t o r {
no p : Person | p i n p . ˆ p a r e n t s

}

At most one father and mother

fac t l o n e P a r e n t s {
a l l p : Person | lone (p . p a r e n t s & Man) and

lone (p . p a r e n t s & Woman)
}

a persons’s siblings are other persons with the same parents

fac t s i b l i n g s D e f i n i t i o n {
a l l p : Person |

p . s i b l i n g s =
{q : Person | p . p a r e n t s = q . p a r e n t s } − p

}

Introduction to Alloy: Constraints 28 / 32

Example Facts

No person can be their own ancestor

fac t s e l f A n c e s t o r {
no p : Person | p i n p . ˆ p a r e n t s

}

At most one father and mother

fac t l o n e P a r e n t s {
a l l p : Person | lone (p . p a r e n t s & Man) and

lone (p . p a r e n t s & Woman)
}

a persons’s siblings are other persons with the same parents

fac t s i b l i n g s D e f i n i t i o n {
a l l p : Person |

p . s i b l i n g s =
{q : Person | p . p a r e n t s = q . p a r e n t s } − p

}

Introduction to Alloy: Constraints 28 / 32

Example Facts

No person can be their own ancestor

fac t s e l f A n c e s t o r {
no p : Person | p i n p . ˆ p a r e n t s

}

At most one father and mother

fac t l o n e P a r e n t s {
a l l p : Person | lone (p . p a r e n t s & Man) and

lone (p . p a r e n t s & Woman)
}

a persons’s siblings are other persons with the same parents

fac t s i b l i n g s D e f i n i t i o n {
a l l p : Person |

p . s i b l i n g s =
{q : Person | p . p a r e n t s = q . p a r e n t s } − p

}

Introduction to Alloy: Constraints 28 / 32

Example Facts

No person can be their own ancestor

fac t s e l f A n c e s t o r {
no p : Person | p i n p . ˆ p a r e n t s

}

At most one father and mother

fac t l o n e P a r e n t s {
a l l p : Person | lone (p . p a r e n t s & Man) and

lone (p . p a r e n t s & Woman)
}

a persons’s siblings are other persons with the same parents

fac t s i b l i n g s D e f i n i t i o n {
a l l p : Person |

p . s i b l i n g s =
{q : Person | p . p a r e n t s = q . p a r e n t s } − p

}

Introduction to Alloy: Constraints 28 / 32

Example Facts

No person can be their own ancestor

fac t s e l f A n c e s t o r {
no p : Person | p i n p . ˆ p a r e n t s

}

At most one father and mother

fac t l o n e P a r e n t s {
a l l p : Person | lone (p . p a r e n t s & Man) and

lone (p . p a r e n t s & Woman)
}

a persons’s siblings are other persons with the same parents

fac t s i b l i n g s D e f i n i t i o n {
a l l p : Person |

p . s i b l i n g s =
{q : Person | p . p a r e n t s = q . p a r e n t s } − p

}

Introduction to Alloy: Constraints 28 / 32

Example Facts

fac t s o c i a l {
−− Every m a r r i e d man (woman) has a w i f e (husband)
a l l p : M a r r i e d |

l e t s = p . s p o u s e |
(p i n Man => s i n Woman) and
(p i n Woman => s i n Man)

−− A s p o u s e can ’ t be a s i b l i n g
no p : M a r r i e d | p . s p o u s e i n p . s i b l i n g s

−− A p e r s o n can ’ t be m a r r i e d to a b l o o d r e l a t i v e
no p : M a r r i e d |

some (p .* p a r e n t s & (p . s p o u s e) . * p a r e n t s)
}

Introduction to Alloy: Constraints 29 / 32

Assertions

Often we believe that our model entails certain constraints that are not
directly expressed

some A && (A in B) entails some B

We can define these constraints as assertions and ask the analyzer to check if
they hold (similarly specifying checking scopes)

as se r t m y A s s e r t i o n { some B }
check m y A s s e r t i o n f o r 5

If the constraint in an assertion does not hold, the analyzer will produce a
counterexample instance

If you expect the constraint to hold but it does not, you can either

make it into a fact, or

refine your model until the assertion holds

Introduction to Alloy: Constraints 30 / 32

Example Assertions

No person has a parent that is also a sibling

as se r t a1 { a l l p : Person |
no p . p a r e n t s & p . s i b l i n g s }

A person’s siblings are his/her siblings’ siblings

as se r t a2 { a l l p : Person |
p . s i b l i n g s = p . s i b l i n g s . s i b l i n g s }

No person shares a common ancestor with his/her spouse (i.e., spouse isn’t
related by blood)

as se r t a3 { no p : M a r r i e d |
some (p . ˆ p a r e n t s & p . s p o u s e . ˆ p a r e n t s) }

Introduction to Alloy: Constraints 31 / 32

Example Assertions

No person has a parent that is also a sibling

as se r t a1 { a l l p : Person |
no p . p a r e n t s & p . s i b l i n g s }

A person’s siblings are his/her siblings’ siblings

as se r t a2 { a l l p : Person |
p . s i b l i n g s = p . s i b l i n g s . s i b l i n g s }

No person shares a common ancestor with his/her spouse (i.e., spouse isn’t
related by blood)

as se r t a3 { no p : M a r r i e d |
some (p . ˆ p a r e n t s & p . s p o u s e . ˆ p a r e n t s) }

Introduction to Alloy: Constraints 31 / 32

Example Assertions

No person has a parent that is also a sibling

as se r t a1 { a l l p : Person |
no p . p a r e n t s & p . s i b l i n g s }

A person’s siblings are his/her siblings’ siblings

as se r t a2 { a l l p : Person |
p . s i b l i n g s = p . s i b l i n g s . s i b l i n g s }

No person shares a common ancestor with his/her spouse (i.e., spouse isn’t
related by blood)

as se r t a3 { no p : M a r r i e d |
some (p . ˆ p a r e n t s & p . s p o u s e . ˆ p a r e n t s) }

Introduction to Alloy: Constraints 31 / 32

Example Assertions

No person has a parent that is also a sibling

as se r t a1 { a l l p : Person |
no p . p a r e n t s & p . s i b l i n g s }

A person’s siblings are his/her siblings’ siblings

as se r t a2 { a l l p : Person |
p . s i b l i n g s = p . s i b l i n g s . s i b l i n g s }

No person shares a common ancestor with his/her spouse (i.e., spouse isn’t
related by blood)

as se r t a3 { no p : M a r r i e d |
some (p . ˆ p a r e n t s & p . s p o u s e . ˆ p a r e n t s) }

Introduction to Alloy: Constraints 31 / 32

Example Assertions

No person has a parent that is also a sibling

as se r t a1 { a l l p : Person |
no p . p a r e n t s & p . s i b l i n g s }

A person’s siblings are his/her siblings’ siblings

as se r t a2 { a l l p : Person |
p . s i b l i n g s = p . s i b l i n g s . s i b l i n g s }

No person shares a common ancestor with his/her spouse (i.e., spouse isn’t
related by blood)

as se r t a3 { no p : M a r r i e d |
some (p . ˆ p a r e n t s & p . s p o u s e . ˆ p a r e n t s) }

Introduction to Alloy: Constraints 31 / 32

Example Assertions

No person has a parent that is also a sibling

as se r t a1 { a l l p : Person |
no p . p a r e n t s & p . s i b l i n g s }

A person’s siblings are his/her siblings’ siblings

as se r t a2 { a l l p : Person |
p . s i b l i n g s = p . s i b l i n g s . s i b l i n g s }

No person shares a common ancestor with his/her spouse (i.e., spouse isn’t
related by blood)

as se r t a3 { no p : M a r r i e d |
some (p . ˆ p a r e n t s & p . s p o u s e . ˆ p a r e n t s) }

Introduction to Alloy: Constraints 31 / 32

Acknowledgments

These notes are heavily based on notes from Matt Dwyer, John Hatcliff, Rod
Howell, Laurence Pilard and Cesare Tinelli.

Introduction to Alloy: Constraints 32 / 32

