
Métodos Formais
2022.2

Introduction to Alloy

Áreas de Teoria e de Linguagens de Programação DCC/UFMG



Outline

Introduction to basic Alloy constructs using a simple example of a static
model

How to define sets, subsets, relations with multiplicity constraints

How to use Alloy’s quantifiers and predicate forms

Basic use of the Alloy Analyzer 6

Loading, running, and analyzing a simple Alloy specification

Adjusting basic tool parameters

Using the visualization tool to view instances of models

Introduction to Alloy 1 / 39



Why was Alloy created?

Lightweight

Small and easy to use

capable of expressing common properties tersely and naturally

Precise

having a simple and uniform mathematical semantics

Tractable

amenable to efficient and fully automatic semantic analysis

within scope limits

Introduction to Alloy 2 / 39



What is Alloy used for?

A textual modeling language aimed at expressing structural and behavioral
properties of software systems

Not meant for modeling code architecture

But an Alloy specification can be closely related to an OO implementation

Introduction to Alloy 3 / 39



Example applications

The Alloy 4 distribution comes with several sample models to illustrate the
use of Alloy’s constructs

Examples

Specification of a distributed spanning tree

Model of a generic file system

Model of a generic file synchronizer

Tower of Hanoi model

. . .

Introduction to Alloy 4 / 39



In summary

Alloy is general enough that it can model

any domain of individuals

relations between them

We will start with a few simple examples

Not necessarily about software

Introduction to Alloy 5 / 39



Example: Family structure

We want to:

Model parent/child relationships as primitive relations

Model spousal relationships as primitive relations

Model relationships such as siblings as derived relations

Enforce biological constraints via first-order predicates (e.g., people have only
one mother)

Enforce social constraints via first-order predicates (e.g., a wife isn’t a sibling)

Confirm or refute the existence of certain derived relationships (e.g., no one
has a wife with whom he shares a parent)

Introduction to Alloy 6 / 39



Example: adressBook

An address book for an email client that maintains a mapping from names to
addresses

FriendBook
Ted -> ted@gmail.com

Ryan -> ryan@hotmail.com

WorkBook
Pilard -> lpilard@ufmg.br

Ryan -> ryan@ufmb.br

Introduction to Alloy 7 / 39



Atoms and Relations

In Alloy, everything is built from atoms and relations

An atom is a primitive entity that is

indivisible: it cannot be broken down into smaller parts
immutable: its properties do not change over time
uninterpreted: it does not have any built in property (the way numbers do for
example)

A relation is a structure that relates atoms. It is a set of tuples, each tuple
being a sequence of atoms

Introduction to Alloy 8 / 39



Atoms and Relations: Examples

Unary relations: a set of names, a set of addrseses and a set of books

Name = {(N0), (N1), (N2)}
Addr = {(D0), (D1)}
Book = {(B0), (B1)}

A binary relation from names to addresses

address = {(N0,D0),(N1,D1)}

A ternary relation from books to names to addresses

address = {(B0,N0,D0),(B0,N1,D1),(B1,N1,D2)}

Introduction to Alloy 9 / 39



Relations

Size of a relation: the number of tuples in the relation

Arity of a relation: the number of atoms in each tuple of the relation

relations with arity 1, 2, and 3 are said to be unary, binary, and ternary
relations

Examples.

relation of arity 1 and size 1:

myName = {(N0)}

relation of arity 2 and size 3:

address = {(N0,D0),(N1,D1),(N2,D1))}

Introduction to Alloy 10 / 39



Main components of Alloy models

Signatures and Fields

Predicates and Functions

Facts

Assertions

Commands and scopes

Introduction to Alloy 11 / 39



Signatures and Fields

Signatures

Describe classes of entities we want to reason about

Sets defined in signatures are fixed (dynamic aspects can be modeled by
time-dependent relations)

Fields

Define relations between signatures

Simple constraints

Multiplicities on signatures

Multiplicities on relations

Introduction to Alloy 12 / 39



Signatures

A signature introduces a set of atoms

The declaration

s i g A {}

introduces a set named A

A set can be introduced as an extension of another; thus

s i g A1 extends A {}

introduces a set A1 that is a subset of A

Introduction to Alloy 13 / 39



Signatures

s i g A {}
s i g B {}
s i g A1 extends A {}
s i g A2 extends A {}

A1 and A2 are extensions of A

A signature declared independently of any other one is a top-level signature,
e.g., A and B

Extensions of the same signature are mutually disjoint, as are top-level
signatures

Introduction to Alloy 14 / 39



Signatures

s i g A {}
s i g B {}
s i g A1 extends A {}
s i g A2 extends A {}

A1 and A2 are extensions of A

A signature declared independently of any other one is a top-level signature,
e.g., A and B

Extensions of the same signature are mutually disjoint, as are top-level
signatures

Introduction to Alloy 15 / 39



Signatures

abstract s i g A {}
s i g B {}
s i g A1 extends A {}
s i g A2 extends A {}

A signature can be introduced as a subset of another

s i g A3 i n A {}
s i g A2 extends A {}

An abstract signature has no elements except those belonging to its
extensions or subsets

All extensions of an abstract signature A form a partition of A

Introduction to Alloy 16 / 39



Fields

Relations are declared as fields of signatures

Writing

s i g A { f : e}

introduces a relation f of type A x e, where e is an expression denoting a
product of signatures

Examples: (with signatures A, B, C)

Binary relation:

s i g A { f 1 : B}

where f1 is a subset of A x B

Ternary relation:

s i g A { f 2 : B −> C}

where f2 is a subset of A x B x C

Introduction to Alloy 17 / 39



Example signatures and fields

A family structure:

abstract s i g Person {
c h i l d r e n : Person ,
s i b l i n g s : Person

}

s i g Man , Woman extends Person {}

s i g M a r r i e d i n Person {
s p o u s e : M a r r i e d

}

Introduction to Alloy 18 / 39



Example: family structure

A family structure:

abstract s i g Person {}
s i g Man extends Person {}
s i g Woman extends Person {}
s i g M a r r i e d i n Person {}

Introduction to Alloy 19 / 39



Example: family structure

A family structure:

abstract s i g Person {
s i b l i n g s : Person

}
s i g Man extends Person {}
s i g Woman extends Person {}
s i g M a r r i e d i n Person {}

An example of an instance is

Person = {(P0), (P1)}

Man = {(P0), (P1)}

Married = {}

Woman = {}

siblings = {(P0,P1), (P1,P0)}

siblings is a binary relation, i.e., a subset of Person x Person

In the instance, P0 and P1 are siblings

Introduction to Alloy 20 / 39



Example: family structure

A family structure:

abstract s i g Person {
s i b l i n g s : Person

}
s i g Man extends Person {}
s i g Woman extends Person {}
s i g M a r r i e d i n Person {}

An example of an instance is

Person = {(P0), (P1)}

Man = {(P0), (P1)}

Married = {}

Woman = {}

siblings = {(P0,P1), (P1,P0)}

siblings is a binary relation, i.e., a subset of Person x Person

In the instance, P0 and P1 are siblings

Introduction to Alloy 20 / 39



Multiplicities

Allow us to constrain the sizes of sets

A multiplicity keyword placed before a signature declaration constrains the
number of elements in the signature’s

m s i g A {}

We can alo make multiplicities constraints on fields:

s i g A { f : m e}
s i g A { f : e1 m −> n e2}

There are four multiplicities

set : any number
some : one or more
lone : zero or one
one : exactly one

Introduction to Alloy 21 / 39



Multiplicities: Examples

Without multiplicity:

A set of colors, each of which is red, yellow or green abstract

s i g C o l o r {}
s i g Red , Yel low , Green extends C o l o r {}

With multiplicity:

An enumeration of colors

abs t rac t s i g C o l o r {}
one s i g Red , Yel low , Green extends C o l o r {}

Introduction to Alloy 22 / 39



Multiplicities: Examples

A file system in which each directory contains any number of objects, and
each alias points to exactly one object

abstract s i g Object {}
s i g D i r e c t o r y extends Object { c o n t e n t s : set Object }
s i g F i l e extends Object {}
s i g A l i a s i n F i l e { to : one Object }

The default multiplicity is one, so:

s i g A { f : e}
s i g A { f : one e}

are equivalent

Introduction to Alloy 23 / 39



Multiplicities: Examples

A book maps names to addresses

There is at most one address per Name
An address is associated to at least one name

s i g Name , Addr {}
s i g Book {

addr : Name some −> lone Addr
}

Introduction to Alloy 24 / 39



Multiplicities: Examples

A collection of weather forecasts, each of which has a field weather
associating every city with exactly one weather condition

s i g F o r e c a s t {weather : C i t y −> one Weather}
s i g C i t y {}
abstract s i g Weather {}
one s i g Rainy , Sunny , Cloudy extends Weather {}

Instance:

City = {(BH), (Uberlandia)}

Rainy = {(rainy)}

Sunny = {(sunny)}

Cloudy = {(cloudy)}

Forecast = {(f1), (f2)}

weather = { (f1, BH, rainy), (f1, Uberlandia, rainy),

(f2, BH, rainy), (f2, Uberlandia, sunny) }

Introduction to Alloy 25 / 39



Multiplicities and Binary Relations

s i g S { f : lone T}

says that, for each element s of S, f maps s to at most a single value in T

Note this means that f is a partial function

What if we had

s i g S { f : one T}

Defines a total function

Introduction to Alloy 26 / 39



Multiplicities and Binary Relations

s i g S { f : lone T}

says that, for each element s of S, f maps s to at most a single value in T

Note this means that f is a partial function

What if we had

s i g S { f : one T}

Defines a total function

Introduction to Alloy 26 / 39



Multiplicities and Binary Relations

s i g S { f : lone T}

says that, for each element s of S, f maps s to at most a single value in T

Note this means that f is a partial function

What if we had

s i g S { f : one T}

Defines a total function

Introduction to Alloy 26 / 39



Multiplicities and Binary Relations

s i g S { f : lone T}

says that, for each element s of S, f maps s to at most a single value in T

Note this means that f is a partial function

What if we had

s i g S { f : one T}

Defines a total function

Introduction to Alloy 26 / 39



Multiplicities and Ternary Relations

s i g S { f : T −> one V}

for each element s of S, over the triples that start with s: f maps each
T-element to exactly one V-element

s i g S { f : T lone −> V}

For each element s of S, over the triples that start with s: f maps at most
one T-element to the same V-element

Introduction to Alloy 27 / 39



Multiplicities and Ternary Relations

s i g S { f : T −> one V}

for each element s of S, over the triples that start with s: f maps each
T-element to exactly one V-element

s i g S { f : T lone −> V}

For each element s of S, over the triples that start with s: f maps at most
one T-element to the same V-element

Introduction to Alloy 27 / 39



Multiplicities and Ternary Relations

s i g S { f : T −> one V}

for each element s of S, over the triples that start with s: f maps each
T-element to exactly one V-element

s i g S { f : T lone −> V}

For each element s of S, over the triples that start with s: f maps at most
one T-element to the same V-element

Introduction to Alloy 27 / 39



Multiplicities and Ternary Relations

s i g S { f : T −> one V}

for each element s of S, over the triples that start with s: f maps each
T-element to exactly one V-element

s i g S { f : T lone −> V}

For each element s of S, over the triples that start with s: f maps at most
one T-element to the same V-element

Introduction to Alloy 27 / 39



Multiplicities and Relations

Other kinds of relational structures can be specified using multiplicities

Examples

− s i g S { f : some T} . . . t o t a l r e l a t i o n
− s i g S { f : set T} . . . p a r t i a l r e l a t i o n
− s i g S { f : T set −> set V}
− s i g S { f : T one −> V}
− . . .

Introduction to Alloy 28 / 39



Cardinality constraints

Multiplicities can also be applied to whole expressions denoting relations

some e e is non-empty

no e e is empty

lone e e has at most one tuple

one e e has exactly one tuple

Introduction to Alloy 29 / 39



Cardinality constraints

Multiplicities can also be applied to whole expressions denoting relations

some e e is non-empty

no e e is empty

lone e e has at most one tuple

one e e has exactly one tuple

Introduction to Alloy 30 / 39



Example: family structure

How would you use multiplicities to define the children relation?

s i g Person { c h i l d r e n : set Person }

Intuition: each person has zero or more children

How would you use multiplicities to define the spouse relation?

s i g M a r r i e d { s p o u s e : one M a r r i e d }

Intuition: each married person has exactly one spouse

Introduction to Alloy 31 / 39



Example: family structure

How would you use multiplicities to define the children relation?

s i g Person { c h i l d r e n : set Person }

Intuition: each person has zero or more children

How would you use multiplicities to define the spouse relation?

s i g M a r r i e d { s p o u s e : one M a r r i e d }

Intuition: each married person has exactly one spouse

Introduction to Alloy 31 / 39



Example: family structure

How would you use multiplicities to define the children relation?

s i g Person { c h i l d r e n : set Person }

Intuition: each person has zero or more children

How would you use multiplicities to define the spouse relation?

s i g M a r r i e d { s p o u s e : one M a r r i e d }

Intuition: each married person has exactly one spouse

Introduction to Alloy 31 / 39



Example: family structure

How would you use multiplicities to define the children relation?

s i g Person { c h i l d r e n : set Person }

Intuition: each person has zero or more children

How would you use multiplicities to define the spouse relation?

s i g M a r r i e d { s p o u s e : one M a r r i e d }

Intuition: each married person has exactly one spouse

Introduction to Alloy 31 / 39



Example: family structure

abstract s i g Person {
c h i l d r e n : set Person ,
s i b l i n g s : set Person

}
s i g Man , Woman extends Person {}
s i g M a r r i e d i n Person {

s p o u s e : one M a r r i e d
}

Introduction to Alloy 32 / 39



run Command

Used to ask AA to generate an instance of the model

May include conditions

Used to guide AA to pick model instances with certain characteristics

E.g., force certain sets and relations to be non-empty

In this case, not part of the “true” specification

Specific for that run

We can use conditions to encode realism constraints to e.g.,

Force generated models to include at least one married person, or one married
man, etc.

Introduction to Alloy 33 / 39



run Command

To analyze a model, you add a run command and instruct AA to execute it.

the run command tells the tool to search for an instance of the model

you may also give a scope to signatures bounds the size of instances that will
be considered

The scope:

Limits the size of instances considered to make instance finding feasible

Represents the maximum number of elements in a top-level signature

Default value is 3 for each top-level signature

AA executes only the first run command in a file

Introduction to Alloy 34 / 39



run Example

−− The s i m p l e s t run command
−− The scope o f e v e r y s i g n a t u r e i s 3
run {}

−− The scope scope o f e v e r y s i g n a t u r e i s 5
run {} f o r 5

−− With c o n d i t i o n s f o r c i n g each set to be p o p u l a t e d
−− S e t t i n g th e scope to 2
run {some Man && some Woman && some M a r r i e d } f o r 2

−− Other s c e n a r i o s
run {some Woman && no Man} f o r 7
run {some Man && some M a r r i e d && no Woman}

Introduction to Alloy 35 / 39



Size Determination

Size determined in a signature declaration has priority on size determined in
scope

Example:

abstract s i g C o l o r {}
one s i g red , y e l l o w , g r e e n extends c o l o r {}
s i g P i x e l { c o l o r : one C o l o r }

run {} f o r 2

The above limits the signature Pixel to 2 elements, but assigns a size of
exactly 3 to Color

Introduction to Alloy 36 / 39



Model weaknesses

The model is underconstrained

It doesn’t match our domain knowledge

Asymmetric marriage, self child/sibling, asymmetric siblings, multiple fathers...

We can add constraints to enrich the model

Under-constrained models are common early on in the development process

AA gives us quick feedback on weaknesses in our model

We can incrementally add constraints until we are satisfied with it

Introduction to Alloy 37 / 39



Adding constraints

We’d like to enforce the following constraints (concerning biology)

No person can be their own parent (or more generally, their own ancestor)

No person can have more than one father or mother

A person’s siblings are those with the same parents

We could also enforce the following social constraints

The spouse relation is symmetric

A man’s wife cannot be one of his siblings

Introduction to Alloy 38 / 39



Acknowledgments

These notes are heavily based on notes from Matt Dwyer, John Hatcliff, Rod
Howell, Laurence Pilard and Cesare Tinelli.

Introduction to Alloy 39 / 39


