
Case Study: Autonomous Rovers

Copyright 2018 Paul Meng and Cesare Tinelli.
These notes are copyrighted materials and may not be used in other course settings outside of the University of Iowa in
their current form or modified form without the express written permission of one of the copyright holders. During this
course, students are prohibited from selling notes to or being paid for taking notes by any person or commercial firm
without the express written permission of one of the copyright holder.

CS:5810
Formal Methods in

Software Engineering

The Task

• Model in Alloy a dynamic domain involving
several rovers moving on a two-dimensional
space

2

North

West East

South

Facts about the System

• There are one or more identical rovers

• Each rover can be turned on and off

3

North

West East

South

Facts about the System

• Each rover can only move forward, or turn in
place to the left or to the right

4

North

West East

South

Facts about the System

• We will model both static and dynamic
aspects of the system

5

North

West East

South

Simplifying Modeling Choices

1) We adopt an interleaving model of time:
only one action is performed, by one of the
rovers, at a time

2) The two dimensional space is a discrete
grid, with

– the X-coordinate growing indefinitely in the
West-East direction and

– the Y-coordinate growing indefinitely in the
South-North

6

Simplifying Modeling Choices

3) Rovers move only by one position at a time
and along the X,Y axes.

7

North

West East

South

Simplifying Modeling Choices

4) A rover turns left or right by exactly 90
degrees

5) A rover can move only in the direction it is
facing

8

Signatures and Fields

open util/ordering [Time] as T
open util/ordering [Coor] as C

-- Coordinates, strictly ordered
sig Time {}
sig Coor {}

-- Position models the individual positions
-- in the grid
sig Position { x: Coor, y: Coor}

9

Signatures and Fields

-- The four cardinal directions
abstract sig Direction {}

one sig North, South, East, West extends
Direction {}

10

Signatures and Fields

some sig Rover {
-- Direction rover is facing at any one time
dir: Direction one -> Time,

-- Rover's position at any one time
pos: Position one -> Time,

-- Rover's on/off status at any one time
on: set Time

}

11

Operators

Turn on
Turn off
Turn left
Turn right
Go

12

Turn On Operator

pred turn_on [rov: Rover, t,t': Time] {
-- Pre-condition
Rover is off at time t (!is_on)

-- Post-condition
Rover is on at time t’ (is_on)

-- Frame condition
All other rovers stay on or off as they were (no_on_changes)
No rover changes direction (no_direction_changes)
No rover changes position (no_position_changes)

}

13

Turn Left Operator

pred turn_left [rov: Rover, t,t': Time] {
-- Pre-condition
Rover is on at time t (is_on)

-- Post-condition
Direction Changes (could be North, South, East, or West)

-- Frame condition
All rovers stay on or off as they were (no_on_changes)
No other rover changes direction (no_direction_changes)
No rover changes position (no_position_changes)

}

14

If-Then-Else in Alloy

Expr1 (=>, implies) Expr2 else Expr3
– Expr1 is a Boolean expression
– Expr2 and Expr3 can be either Boolean or Set expression

E.g. let parents_in_law =
(John.spouse = Mary => Mary.parents
else John.spouse = Lily => Lily.parents
else none)

15

Go Operator

pred go[rov: Rover, d: Direction, t,t': Time] {
-- Pre-condition
Rover is on at time t (is_on)
d is rover’s direction at time t

-- Post-condition
Position Changes (could move towards North, South, East, or
West)
(next_pos[p: Position, d: Direction]: Position)
-- Frame condition
All rovers stay on or off as they were (no_on_changes)
No rover changes direction (no_direction_changes)
No other rover changes position (no_position_changes)

} 16

The Module Ordering

// return the predecessor of e, or empty set if e is
// the first element
fun prev [e: S]: lone S { e.(Ord.Prev) }

// return the successor of e, or empty set of e is
// the last element
fun next [e: S]: lone S { e.(Ord.Next) }

17

Transition System

pred System {
init[T/first]
all t: Time – T/last | transitions[t, T/next[t]]

}
• Facts
-- P0 is the origin position of the coordinate system

• Init
-- Rover R1 is at the origin position, facing East and turned off
-- The other rovers, if any, are at a different position than R1's

• Transitions
-- Some rover turn on, off, left, right, or go

18

System Goal

pred goal[t: Time]{
-- R1 is not at the origin
R1.pos.t != P0
-- R1 is facing north
R1.dir.t = North

}
pred goalCheck{

one Rover
System
some t : Time | goal[t]

}
19

