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The Task

• Model in Alloy a dynamic domain involving 
several rovers moving on a two-dimensional 
space
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Facts about the System

• There are one or more identical rovers

• Each rover can be turned on and off
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Facts about the System

• Each rover can only move forward, or turn in 
place to the left or to the right
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Facts about the System

• We will model both static and dynamic 
aspects of the system
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Simplifying Modeling Choices

1) We adopt an interleaving model of time:
only one action is performed, by one of the 
rovers, at a time

2) The two dimensional space is a discrete 
grid, with 

– the X-coordinate growing indefinitely in the 
West-East direction and 

– the Y-coordinate growing indefinitely in the 
South-North
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Simplifying Modeling Choices

3) Rovers move only by one position at a time 
and along the X,Y axes.
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Simplifying Modeling Choices

4) A rover turns left or right by exactly 90 
degrees

5) A rover can move only in the direction it is 
facing
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Signatures and Fields

open util/ordering [Time] as T
open util/ordering [Coor] as C

-- Coordinates, strictly ordered
sig Time {}
sig Coor {} 

-- Position models the individual positions 
-- in the grid
sig Position {  x: Coor,  y: Coor}
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Signatures and Fields

-- The four cardinal directions
abstract sig Direction {}

one sig North, South, East, West extends
Direction {}
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Signatures and Fields

some sig Rover {  
-- Direction rover is facing at any one time  
dir: Direction one -> Time,  

-- Rover's position at any one time  
pos: Position one -> Time,  

-- Rover's on/off status at any one time 
on: set Time

}
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Operators

Turn on
Turn off
Turn left
Turn right
Go
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Turn On Operator

pred turn_on [rov: Rover, t,t': Time] {
-- Pre-condition
Rover is off at time t (!is_on)

-- Post-condition
Rover is on at time t’ (is_on)

-- Frame condition
All other rovers stay on or off as they were (no_on_changes)
No rover changes direction (no_direction_changes)
No rover changes position (no_position_changes)

}
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Turn Left Operator

pred turn_left [rov: Rover, t,t': Time] {
-- Pre-condition
Rover is on at time t (is_on)

-- Post-condition
Direction Changes (could be North, South, East, or West)

-- Frame condition
All rovers stay on or off as they were (no_on_changes)
No other rover changes direction (no_direction_changes)
No rover changes position (no_position_changes)

}
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If-Then-Else in Alloy

Expr1 (=>, implies) Expr2 else Expr3
– Expr1 is a Boolean expression
– Expr2 and Expr3 can be either Boolean or Set expression

E.g. let parents_in_law =
(John.spouse = Mary => Mary.parents
else John.spouse = Lily => Lily.parents
else none)
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Go Operator

pred go[rov: Rover, d: Direction, t,t': Time] {
-- Pre-condition
Rover is on at time t (is_on)
d is rover’s direction at time t

-- Post-condition
Position Changes (could move towards North, South, East, or 
West) 
(next_pos[p: Position, d: Direction]: Position)
-- Frame condition
All rovers stay on or off as they were (no_on_changes)
No rover changes direction (no_direction_changes)
No other rover changes position (no_position_changes)
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The Module Ordering

// return the predecessor of e, or empty set if e is
// the first element
fun prev [e: S]: lone S { e.(Ord.Prev) }

// return the successor of e, or empty set of e is
// the last element
fun next [e: S]: lone S { e.(Ord.Next) }
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Transition System

pred System {
init[T/first]
all t: Time – T/last | transitions[t, T/next[t]]

}
• Facts
-- P0 is the origin position of the coordinate system

• Init
-- Rover R1 is at the origin position, facing East and turned off
-- The other rovers, if any, are at a different position than R1's

• Transitions
-- Some rover turn on, off, left, right, or go
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System Goal

pred goal[t: Time]{
-- R1 is not at the origin 
R1.pos.t != P0
-- R1 is facing north 
R1.dir.t = North

}
pred goalCheck{

one Rover
System
some t : Time | goal[t]

}
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